
Falcon-Caching
Release 1.1.0

Apr 16, 2022

Contents

1 Quickstart 3

2 Installation 5

3 Set Up 7

4 Eviction strategies 9
4.1 ‘time-based’ . 9
4.2 ‘rest-based’ . 9
4.3 ‘rest-and-time-based’ . 9

5 Backends (alias ‘CACHE_TYPE’) 11
5.1 ‘simple’ (the default) . 11
5.2 ‘null’ . 12
5.3 ‘filesystem’ . 12
5.4 ‘redis’ . 12
5.5 ‘redis-sentinel’ . 13
5.6 ‘memcached’ . 13
5.7 ‘saslmemcached’ . 14
5.8 ‘spreadsaslmemcached’ . 14
5.9 ‘uwsgi’ . 15

6 What gets cached 17

7 Memoization 19
7.1 Deleting memoize cache . 20

8 Configuring Falcon-Caching 21

9 Resource level caching 23

10 Explicitly Caching Data 25

11 Query String 27

12 Recipes 29
12.1 Multiple decorators . 29
12.2 Development . 30

i

12.3 API Reference . 30
12.4 Additional Information . 51

Python Module Index 53

Index 55

ii

Falcon-Caching, Release 1.1.0

Version: 1.1.0

Falcon-Caching adds cache support to the Falcon web framework.

It is a port of the popular Flask-Caching library to Falcon.

The library aims to be compatible with CPython 3.7+ and PyPy 3.5+.

You can use this library both with a sync (WSGI) or an async (ASGI) app, by using the matching cache object (Cache
or AsyncCache). Throughout the documentation we will be mostly be showcasing examples for the Cache object,
but all those example could be used with the AsyncCache object too. The Quickstart example shows both Cache
and AsyncCache side-by-side. Obviously you should never be mixing the two in a single app, use one or the other.

Contents 1

https://github.com/falconry/falcon
https://github.com/sh4nks/flask-caching

Falcon-Caching, Release 1.1.0

2 Contents

CHAPTER 1

Quickstart

WSGI (alias sync) example:

import falcon
from falcon_caching import Cache

setup the cache instance
cache = Cache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:

mark the method as cached
@cache.cached(timeout=600)
def on_get(self, req, resp):

pass

create the app with the cache middleware
you can use falcon.API() instead of falcon.App() below Falcon 3.0.0
app = falcon.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

ASGI (alias async) example:

import falcon.asgi
from falcon_caching import AsyncCache

setup the cache instance
cache = AsyncCache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:

mark the method as cached

(continues on next page)

3

Falcon-Caching, Release 1.1.0

(continued from previous page)

@cache.cached(timeout=600)
async def on_get(self, req, resp):

pass

app = falcon.asgi.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

Alternatively you could cache the whole resource (watch out for issues mentioned in Resource level caching):

mark the whole resource as cached
@cache.cached(timeout=600)
class ThingsResource:

def on_get(self, req, resp):
pass

def on_post(self, req, resp):
pass

Warning: Be careful with the order of middlewares. The cache.middleware will short-circuit any further
processing if a cached version of that resource is found. It will skip any remaining process_request and
process_resource methods, as well as the responder method that the request would have been routed to.
However, any process_response middleware methods will still be called.

This is why it is suggested that you add the cache.middleware following any authentication / authorization
middlewares to avoid unauthorized access of records served directly from the cache.

4 Chapter 1. Quickstart

CHAPTER 2

Installation

Install the extension with pip:

$ pip install Falcon-Caching

5

Falcon-Caching, Release 1.1.0

6 Chapter 2. Installation

CHAPTER 3

Set Up

Cache is managed through a Cache and the AsyncCache instance:

import falcon
import falcon.asgi
from falcon_caching import Cache, AsyncCache

setup the cache instance
cache = Cache(# could also be 'AsyncCache'

config=
{

'CACHE_EVICTION_STRATEGY': 'time-based', # how records are
evicted

'CACHE_TYPE': 'simple' # backend used to store the cache
})

class ThingsResource:
mark the method as cached for 600 seconds
@cache.cached(timeout=600)
def on_get(self, req, resp): # this could also be an async function

pass # if AsyncCache() is used

create the app with the cache middleware
you can use falcon.API() instead of falcon.App() below Falcon 3.0.0
app = falcon.App(middleware=cache.middleware)
app = falcon.asgi.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

7

Falcon-Caching, Release 1.1.0

8 Chapter 3. Set Up

CHAPTER 4

Eviction strategies

Once a resource is cached, there is the question of how that cached record will be evicted from the cache - alias what
‘eviction strategy’ is followed.

Below is the list of supported strategies:

4.1 ‘time-based’

The most well known eviction strategy is simply time-based, meaning that the cached record gets evicted based on a
timeout (also called TTL, time-to-live) being reached. In this case the cached data is invalidated x seconds after it was
generated. In our library this is called ‘time-based’ eviction and it is the default eviction strategy.

4.2 ‘rest-based’

For REST APIs - which implement the RESTful methods closely - there is another possible option, to evict records
based on the definition of the RESTful methods.

In this case GET requests are the only ones cached, but those are cached indefinitely. They only get removed from
the cache when another request of the same resource of type PUT / PATCH / POST or DELETE arrives. This will
invalidate/evict the cached record and force the next GET request to re-cache it. We call this ‘rest-based’ eviction
strategy.

4.3 ‘rest-and-time-based’

The third option is a combination of these two, where the eviction happens based on whichever of these two events
occurs first - the time expires or a PUT/PATCH/POST/DELETE request arrives. We call this ‘rest-and-time-based’
eviction strategy.

These eviction strategies can be set with the CACHE_EVICTION_STRATEGY config attribute - see Configuring
Falcon-Caching.

9

https://en.wikipedia.org/wiki/Representational_state_transfer#Relationship_between_URI_and_HTTP_methods

Falcon-Caching, Release 1.1.0

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'simple',
'CACHE_EVICTION_STRATEGY': 'rest-based'

})

If no CACHE_EVICTION_STRATEGY is provided then the ‘time-based’ strategy is used by default.

10 Chapter 4. Eviction strategies

CHAPTER 5

Backends (alias ‘CACHE_TYPE’)

When you are caching you have the choice of what kind of backend to cache to, be that a Redis database, Memcached,
the local process’ memory or just files on the local filesystem.

The Falcon-Caching library offers you different backend options and made to be extendable, so additional backend
options can be added.

The type of backend used is determined by the CACHE_TYPE attribute - see Configuring Falcon-Caching.

Below is an example of using CACHE_TYPE with value ‘simple’ - which makes the cached records stored in the local
process’ memory (not 100% thread safe!):

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'simple', # backend 'simple' will be used
'CACHE_EVICTION_STRATEGY': 'time-based'

})

Note: Credits must be given to the authors and maintainers of the Flask-Caching library, as the structure and much of
the code of our backends was ported from their popular library.

Below is a list of available backends, alias the available CACHE_TYPE options:

5.1 ‘simple’ (the default)

A simple memory cache for single process environments. This option exists mainly for the development server and
is not 100% thread safe. It tries to use as many atomic operations as possible and no locks for simplicity, but it could
happen under heavy load that keys are added multiple times. Do not use in production!

Example:

11

https://github.com/sh4nks/flask-caching

Falcon-Caching, Release 1.1.0

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'simple', # backend 'simple' will be used
'CACHE_EVICTION_STRATEGY': 'time-based'

})

5.2 ‘null’

A cache that doesn’t cache. This can be useful for unit testing.

5.3 ‘filesystem’

A cache that stores the items on the file system. This cache depends on being the only user of the ‘cache_dir’. Make
absolutely sure that nobody but this cache stores files there or otherwise the cache will randomly delete files therein.

Example:

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'filesystem',
'CACHE_EVICTION_STRATEGY': 'time-based',
'CACHE_DIR': '/tmp/falcon-cache-dedicated/',
'CACHE_THRESHOLD': 500 # the maximum number of items the

cache stores before it starts
deleting some. A threshold value
of 0 indicates no threshold.
default: 500

})

5.4 ‘redis’

A cache that stores the items in the Redis key-value store or an object which is API compatible with the official Python
Redis client (redis-py).

If you want to use an object which is API compatible with the official Python Redis client (redis-py), then just supply
that as an initialized object to the CACHE_REDIS_HOST parameter.

If you use the same Redis database for other purposes too, then you are strongly advised to specify the
CACHE_KEY_PREFIX, so keys would not accidentally collide and cache.clean() calls would only remove keys from
the cache and not other records.

Example:

from falcon_caching import Cache

cache = Cache(
config={

(continues on next page)

12 Chapter 5. Backends (alias ‘CACHE_TYPE’)

Falcon-Caching, Release 1.1.0

(continued from previous page)

'CACHE_TYPE': 'redis',
'CACHE_EVICTION_STRATEGY': 'time-based',
'CACHE_REDIS_HOST': 'localhost', # Redis host/client object

default: 'localhost'
'CACHE_REDIS_PORT': 6379, # default: 6379
'CACHE_REDIS_PASSWORD': 'MyRedisPassword', # default: None
'CACHE_REDIS_DB': 0, # default: 0
'CACHE_KEY_PREFIX': 'mycache' # default: None

})

Alternatively you could also supply a Redis URL via the CACHE_REDIS_URL argument, like re-
dis://user:password@localhost:6379/2.

5.5 ‘redis-sentinel’

A cache that stores the items in a Redis Sentinel, which is a high availability ‘load-balancer’ for a Redis cluster.

Just like for ‘redis’, if you use the same Redis database for other purposes too, then you are strongly advised to specify
the CACHE_KEY_PREFIX, so keys would not accidentally collide and cache.clean() calls would only remove keys
from the cache and not other records.

Example:

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'redissentinel'
'CACHE_EVICTION_STRATEGY': 'time-based',
'CACHE_REDIS_SENTINELS': [("127.0.0.1", 26379),

("10.0.0.1", 26379)],
'CACHE_REDIS_SENTINEL_MASTER': 'mymaster', # default: None
'CACHE_REDIS_PASSWORD': 'MyRedisPassword', # default: None
'CACHE_REDIS_SENTINEL_PASSWORD': 'MyPsw', # default: None
'CACHE_REDIS_DB': 0, # default: 0
'CACHE_KEY_PREFIX': 'mycache' # default: None

})

5.6 ‘memcached’

A cache that stores the items in a Memcached instance or cluster. It supports the pylibmc, memcache and the google
app engine memcache libraries.

You can supply one or more server addresses via CACHE_MEMCACHED_SERVERS or you can supply an already
initialized client, an object that resembles the API of a memcache.Client. If you have supplied a server(s) address, then
the library will pick the best memcached client library available to use.

Example:

from falcon_caching import Cache

cache = Cache(
config={

(continues on next page)

5.5. ‘redis-sentinel’ 13

https://redis.io/topics/sentinel

Falcon-Caching, Release 1.1.0

(continued from previous page)

'CACHE_TYPE': 'memcached',
'CACHE_EVICTION_STRATEGY': 'time-based',
'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",

"127.0.0.1:11212"]
'CACHE_KEY_PREFIX': 'cache' # default: None

})

Note: Flask-Caching does not pass additional configuration options to memcached backends. To add additional
configuration to these caches, directly set the configuration options on the object after instantiation:

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'memcached',
'CACHE_EVICTION_STRATEGY': 'time-based',
'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",

"127.0.0.1:11212"]
'CACHE_KEY_PREFIX': 'cache' # default: None

})

Break convention and set options on the _client object
directly. For pylibmc behaviors:
cache.cache._client.behaviors["tcp_nodelay"] = True

5.7 ‘saslmemcached’

A cache that stores the items in an SASL-authentication protected Memcached instance or cluster.

Just like for memcached - you can supply one or more server addresses via CACHE_MEMCACHED_SERVERS or
you can supply an already initialized client, an object that resembles the API of a memcache.Client.

Example:

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'saslmemcached',
'CACHE_EVICTION_STRATEGY': 'time-based',
'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",

"127.0.0.1:11212"]
'CACHE_MEMCACHED_USERNAME': 'myuser', # default: None
'CACHE_MEMCACHED_PASSWORD': 'MyPassword', # default: None
'CACHE_KEY_PREFIX': 'cache' # default: None

})

5.8 ‘spreadsaslmemcached’

A subclass of the saslmemcached backend that will spread the cached values across multiple records if they are bigger
than the memcached treshold which by default is 1M.

14 Chapter 5. Backends (alias ‘CACHE_TYPE’)

Falcon-Caching, Release 1.1.0

Spreading requires using pickle to store the value, which can significantly impact the performance.

5.9 ‘uwsgi’

Implements the cache using uWSGI’s caching framework.

To set the uwsgi caching instance to connect to, for example: mycache@localhost:3031, use the
CACHE_UWSGI_NAME argument, which defaults to an empty string, in which case uWSGI will cache in the lo-
cal instance.

This backend cannot be used when running under PyPy, because the uWSGI API implementation for PyPy is lacking
the required functionality.

Example:

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'uwsgi',
'CACHE_UWSGI_NAME': 'mycache@localhost:3031', # default: ''
'CACHE_KEY_PREFIX': 'cache' # default: None

})

5.9. ‘uwsgi’ 15

Falcon-Caching, Release 1.1.0

16 Chapter 5. Backends (alias ‘CACHE_TYPE’)

CHAPTER 6

What gets cached

You might ask the question that what (what data) is getting cached when a responder is cached.

By default two things are cached: the response body and the response’s Content-Type header.

To be able to store these two things in the cache backend under one object, we use msgpack to serialize and then
deserialize when loading the record back from the cache. While msgpack is a fast serializer, this does take some time.

Note: If you know that all of your cached responders are using the `Content-Type`= `application/json`
header - which is very typical for basic APIs in these days - then you don’t need the `Content-Type` header to
be cached. This is because the `Content-Type` = `application/json` is the default in Falcon and it is
added to the response when no other value is specified.

So in case your application only generates responses with the `Content-Type` = `application/json
header, then you can turn off this serialization storing the Content-Type header and benefit from the performance
boost of not needing to serialize and deserialize messages.

You can turn off the serialization by setting ‘CACHE_CONTENT_TYPE_JSON_ONLY = True‘ in the config - see
Configuring Falcon-Caching.

New in version 0.2.

17

https://github.com/msgpack/msgpack-python

Falcon-Caching, Release 1.1.0

18 Chapter 6. What gets cached

CHAPTER 7

Memoization

New in version 0.3.

See Cache.memoize()

Using the @memoize decorator you are able to cache the result of other non-view related functions. In memoization,
the functions arguments are also included into the cache_key.

Note: Credits must be given to the authors and maintainers of the Flask-Caching library, as much of the code of our
memoize method was ported from their popular library.

Outside just simple function, memoize is also designed for methods, since it will take into account the identity. of the
‘self’ or ‘cls’ argument as part of the cache key.

The theory behind memoization is that if you have a function you need to call several times in one request, it would
only be calculated the first time that function is called with those arguments. For example, an sqlalchemy object that
determines if a user has a role. You might need to call this function many times during a single request. To keep from
hitting the database every time this information is needed you might do something like the following:

class Person(db.Model):
@cache.memoize(50)
def has_membership(self, role_id):

return Group.query.filter_by(user=self, role_id=role_id).count() >= 1

Warning: Using mutable objects (classes, etc) as part of the cache key can become tricky. It is suggested to not
pass in an object instance into a memoized function. However, the memoize does perform a repr() on the passed
in arguments so that if the object has a __repr__ function that returns a uniquely identifying string for that object,
that will be used as part of the cache key.

For example, an sqlalchemy person object that returns the database id as part of the unique identifier:

class Person(db.Model):
def __repr__(self):

return "%s(%s)" % (self.__class__.__name__, self.id)

19

https://github.com/sh4nks/flask-caching
http://docs.python.org/library/functions.html#id

Falcon-Caching, Release 1.1.0

7.1 Deleting memoize cache

See Cache.delete_memoized()

New in version 0.3.

You might need to delete the cache on a per-function bases. Using the above example, lets say you change the users
permissions and assign them to a role, but now you need to re-calculate if they have certain memberships or not. You
can do this with the delete_memoized() function:

cache.delete_memoized(user_has_membership)

Note: If only the function name is given as parameter, all the memoized versions of it will be invalidated. However,
you can delete specific cache by providing the same parameter values as when caching. In following example only the
user-role cache is deleted:

user_has_membership('demo', 'admin')
user_has_membership('demo', 'user')

cache.delete_memoized(user_has_membership, 'demo', 'user')

20 Chapter 7. Memoization

CHAPTER 8

Configuring Falcon-Caching

The following configuration values exist for Falcon-Caching:

21

Falcon-Caching, Release 1.1.0

CACHE_EVICTION_STRATEGY The eviction strategy determines when a cached resource is
removed from cache.
Available eviction strategies:

• time-based: records are removed once time expires
(default)

• rest-based: records are removed once a
PUT/POST/PATCH/DELETE call is made against the
resource

• rest-and-time-based: records are removed either by
time or request method (whichever happens first)

See more at Eviction strategies
CACHE_TYPE Specifies which type of caching object to use. This is an

import string that will be imported and instantiated. It is as-
sumed that the import object is a function that will return a
cache object that adheres to the cache API.
For falcon_caching.backends objects, you do not need to
specify the entire import string, just one of the following
names.
Built-in cache types:

• null: NullCache (default)
• simple: SimpleCache
• filesystem: FileSystemCache
• redis: RedisCache (redis required)
• redissentinel: RedisSentinelCache (redis required)
• uwsgi: UWSGICache (uwsgi required)
• memcached: MemcachedCache (pylibmc or mem-

cache required)
• gaememcached: same as memcached (for backwards

compatibility)
• saslmemcached: SASLMemcachedCache (pylibmc

required)
• spreadsaslmemcached: SpreadSASLMemcached-

Cache (pylibmc required)

CACHE_CONTENT_TYPE_JSON_ONLY Set to True if all your cached responders use the
application/json Content-Type, which will turn
off serialization and provide a performance boost. Defaults
to False.

CACHE_NO_NULL_WARNING Silence the warning message when using cache type of ‘null’.
CACHE_ARGS Optional list to unpack and pass during the cache class in-

stantiation.
CACHE_OPTIONS Optional dictionary to pass during the cache class instantia-

tion.
CACHE_DEFAULT_TIMEOUT The default timeout that is used if no timeout is specified.

Unit of time is seconds.
CACHE_IGNORE_ERRORS If set to any errors that occurred during the deletion process

will be ignored. However, if it is set to False it will stop on
the first error. This option is only relevant for the backends
filesystem and simple. Defaults to False.

CACHE_THRESHOLD The maximum number of items the cache will store before
it starts deleting some. Used only for SimpleCache and
FileSystemCache

CACHE_KEY_PREFIX A prefix that is added before all keys. This makes it possible
to use the same memcached server for different apps. Used
only for RedisCache and MemcachedCache

CACHE_UWSGI_NAME The name of the uwsgi caching instance to connect to, for
example: mycache@localhost:3031, defaults to an empty
string, which means uWSGI will cache in the local instance.

CACHE_MEMCACHED_SERVERS A list or a tuple of server addresses. Used only for Mem-
cachedCache

CACHE_MEMCACHED_USERNAME Username for SASL authentication with memcached. Used
only for SASLMemcachedCache

CACHE_MEMCACHED_PASSWORD Password for SASL authentication with memcached. Used
only for SASLMemcachedCache

CACHE_REDIS_HOST A Redis server host. Used only for RedisCache.
CACHE_REDIS_PORT A Redis server port. Default is 6379. Used only for Redis-

Cache.
CACHE_REDIS_PASSWORD A Redis password for server. Used only for RedisCache and

RedisSentinelCache.
CACHE_REDIS_DB A Redis db (zero-based number index). Default is 0. Used

only for RedisCache and RedisSentinelCache.
CACHE_REDIS_SENTINELS A list or a tuple of Redis sentinel addresses. Used only for

RedisSentinelCache.
CACHE_REDIS_SENTINEL_MASTER The name of the master server in a sentinel configuration.

Used only for RedisSentinelCache.
CACHE_DIR Directory to store cache. Used only for FileSystemCache.
CACHE_REDIS_URL URL to connect to Redis server. Example redis:/

/user:password@localhost:6379/2. Supports
protocols redis://, rediss:// (redis over TLS)
and unix://. See more info about URL sup-
port at http://redis-py.readthedocs.io/en/latest/index.html#
redis.ConnectionPool.from_url. Used only for RedisCache.

22 Chapter 8. Configuring Falcon-Caching

mailto:mycache@localhost
http://redis-py.readthedocs.io/en/latest/index.html#redis.ConnectionPool.from_url
http://redis-py.readthedocs.io/en/latest/index.html#redis.ConnectionPool.from_url

CHAPTER 9

Resource level caching

In Falcon-Caching you mark individual methods or resources to be cached by adding the @cache.cached() dec-
orator to them.

It is possible to add this decorator on the resource (class) level to mark the whole resource - and so all of its 'on_'
methods - as cached:

mark the whole resource as cached
which will decorate all the on_...() methods of this class
@cache.cached(timeout=600)
class ThingsResource:

def on_get(self, req, resp):
pass

def on_post(self, req, resp):
pass

BUT if any of those 'on_' methods are supposed to modify the data or have some other non-cachable
actions, then that will NOT be executed when the response is returned from the cache - assuming the
CACHE_EVICTION_STRATEGY is set to ‘time-based’ - which is the default.

The CACHE_EVICTION_STRATEGY values of ‘rest-based’ and ‘rest-and-time-based’ are safe, as those inval-
idate the cache for any PUT/PATCH/POST/DELETE calls and do NOT serve the response from the cache for those
methods.

This happens because the cache.middleware short-circuits any further processing if a cached version of that item is
found. If a cached version is found then it will skip any remaining process_request and process_resource methods, as
well as the responder method that the request would have been routed to. However, any process_response middleware
methods will still be called.

We suggest that you only use the resource level (eg class) decorator if you use the CACHE_EVICTION_STRATEGY
of ‘rest-based’ or ‘rest-and-time-based’ and NOT if you use the ‘time-based’ strategy. The only exception to this
rule of thumb could be if (1) you are certain that all the methods of that resource can be served from the cache or (2)
all the actions for those methods are taken in process_response phase.

23

Falcon-Caching, Release 1.1.0

24 Chapter 9. Resource level caching

CHAPTER 10

Explicitly Caching Data

Data can be cached explicitly by using the proxy methods like Cache.set(), and Cache.get() directly. There
are many other proxy methods available via the Cache class - see them listed below.

For example:

from falcon_caching import Cache

cache = Cache(
config={

'CACHE_TYPE': 'simple',
'CACHE_EVICTION_STRATEGY': 'rest-based'

})

...

def test(foo=None):
if foo is not None:

cache.set("foo", foo) # saving a value into the cache
bar = cache.get("foo") # retrieving the value from the cache

Supported methods:

cache.set("foo", "bar")
cache.has("foo")
cache.get("foo")
cache.add("foo", "bar") # like set, except it doesn't overwrite
cache.set_many({"foo": "bar", "foo2": "bar2"})
cache.get_many(["foo", "foo2"]) # returns a list
cache.get_dict(["foo", "foo2"]) # returns a dict
cache.delete("foo")
cache.delete_many("foo", "foo2")
cache.set("foo3", 1)
cache.inc("foo3") # increment, only supported by Redis&Redis Sentinel
cache.dec("foo3") # decrement, only supported by Redis&Redis Sentinel

(continues on next page)

25

Falcon-Caching, Release 1.1.0

(continued from previous page)

cache.clear() # clears all cache - not supported by all backends
WARNING: some implementations (Redis) will flush
the whole database!!!

26 Chapter 10. Explicitly Caching Data

CHAPTER 11

Query String

Currently the query string is NOT used in the cache key, so two requests which only differ in the query string will be
cached against the same key.

27

https://falcon.readthedocs.io/en/stable/api/request_and_response.html#falcon.Request.query_string

Falcon-Caching, Release 1.1.0

28 Chapter 11. Query String

CHAPTER 12

Recipes

12.1 Multiple decorators

For scenarios where there is a need for multiple decorators and the @cache.cached() cannot be the topmost one,
we need to register the decorators a special way.

This scenario is complicated because our @cache.cached() just marks the fact that the given method is decorated
with a cache, which later gets picked up by the middleware and triggers caching. If the @cache.cached() is the
topmost decorator then it is easy to pick that up, but if there are other decorators ‘ahead’ it, then those will ‘hide’ the
@cache.cached(). This is because decorators in Python are just syntactic sugar for nested function calls.

To be able to tell if the given endpoint was decorated by the @cache.cached() decorator when that is NOT the
topmost decorator, you need to decorate your method by registering your decorators using the @register() helper
decorator.

See more about this issue at https://stackoverflow.com/questions/3232024/introspection-to-get-decorator-names-on-a-method

import falcon
from falcon_caching import Cache
from falcon_caching.utils import register

limiter = Limiter(
key_func=get_remote_addr,
default_limits=["10 per hour", "2 per minute"]

)

cache = Cache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:
this is fine, as the @cache.cached() is the topmost (eg the first) decorator:
@cache.cached(timeout=600)
@another_decorator
def on_get(self, req, resp):

pass

(continues on next page)

29

https://stackoverflow.com/questions/3232024/introspection-to-get-decorator-names-on-a-method

Falcon-Caching, Release 1.1.0

(continued from previous page)

class ThingsResource2:
the @cache.cached() is NOT the topmost decorator, so
this would NOT work - the cache decorator would be ignored!!!!
DO NOT DO THIS:
@another_decorator
@cache.cached(timeout=600)
def on_get(self, req, resp):

pass

class ThingsResource3:
use your decorators this way:
@register(another_decorator, cache.cached(timeout=600))
def on_get(self, req, resp):

pass

12.2 Development

For development guidelines see https://github.com/zoltan-fedor/falcon-caching#development

12.3 API Reference

If you are looking for information on a specific function, class or method of a service, then this part of the documen-
tation is for you.

12.3.1 API Reference Guide

Cache API

Falcon-Caching - a caching module for the Falcon web framework

class falcon_caching.AsyncCache(config: Dict[str, Any])
This is the central class for the caching

You need to initialize this object to setup the attributes of the caching and then supply the object’s middleware
to the Falcon app.

Parameters (dict of str (config) – str): Cache config settings

cache
An initialized ‘CACHE_TYPE’ cache from the backends.

Type BaseCache

cache_args
Optional list passed during the cache class instantiation.

Type list of str

cache_options (dict of str
str): Optional dictionary passed during the cache class instantiation.

config (dict of str
str): Cache config settings

30 Chapter 12. Recipes

https://github.com/zoltan-fedor/falcon-caching#development

Falcon-Caching, Release 1.1.0

add(*args, **kwargs)→ bool
It adds a given key and value to the cache, but only if no record which such key already exists.

cached(timeout: int)
This is the decorator used to decorate a resource class or the requested method of the resource class

clear()→ bool
It clears all cache - if the CACHE_KEY_PREFIX config attribute is used then it only removes key starting
with that prefix, otherwise it flushes the whole database.

dec(*args, **kwargs)→ Optional[int]
It decrements and returns the value of a numerical cache record. Only works for Redis and Redis Sentinel!

delete(*args, **kwargs)→ bool
It deletes the cached record based on the provided key.

delete_many(*args, **kwargs)→ bool
It deletes all cached record matching the list of keys provided.

delete_memoized(f, *args, **kwargs)
Deletes the specified functions caches, based by given parameters. If parameters are given, only the func-
tions that were memoized with them will be erased. Otherwise all versions of the caches will be forgotten.
Example:

@cache.memoize(50)
def random_func():

return random.randrange(1, 50)
@cache.memoize()
def param_func(a, b):

return a+b+random.randrange(1, 50)

::

>>> random_func()
43
>>> random_func()
43
>>> cache.delete_memoized(random_func)
>>> random_func()
16
>>> param_func(1, 2)
32
>>> param_func(1, 2)
32
>>> param_func(2, 2)
47
>>> cache.delete_memoized(param_func, 1, 2)
>>> param_func(1, 2)
13
>>> param_func(2, 2)
47

Delete memoized is also smart about instance methods vs class methods. When passing a instancemethod,
it will only clear the cache related to that instance of that object. (object uniqueness can be overridden
by defining the __repr__ method, such as user id). When passing a classmethod, it will clear all caches
related across all instances of that class. Example:

12.3. API Reference 31

Falcon-Caching, Release 1.1.0

class Adder(object):
@cache.memoize()
def add(self, b):

return b + random.random()

::

>>> adder1 = Adder()
>>> adder2 = Adder()
>>> adder1.add(3)
3.23214234
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(adder1.add)
>>> adder1.add(3)
3.01348673
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(Adder.add)
>>> adder1.add(3)
3.53235667
>>> adder2.add(3)
3.72341788

Parameters

• fname – The memoized function.

• *args – A list of positional parameters used with memoized function.

• **kwargs – A dict of named parameters used with memoized function.

Note: Falcon-Caching uses inspect to order kwargs into positional args when the function is memoized.
If you pass a function reference into fname, Falcon-Caching will be able to place the args/kwargs in the
proper order, and delete the positional cache. However, if delete_memoized is just called with the
name of the function, be sure to pass in potential arguments in the same order as defined in your function
as args only, otherwise Falcon-Caching will not be able to compute the same cache key and delete all
memoized versions of it.

Note: Falcon-Caching maintains an internal random version hash for the function. Using
delete_memoized will only swap out the version hash, causing the memoize function to recompute re-
sults and put them into another key. This leaves any computed caches for this memoized function within
the caching backend. It is recommended to use a very high timeout with memoize if using this function,
so that when the version hash is swapped, the old cached results would eventually be reclaimed by the
caching backend.

delete_memoized_verhash(f, *args)
Delete the version hash associated with the function. .. warning:

Performing this operation could leave keys behind that have
been created with this version hash. It is up to the application
to make sure that all keys that may have been created with this

(continues on next page)

32 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

(continued from previous page)

version hash at least have timeouts so they will not sit orphaned
in the cache backend.

get(*args, **kwargs)→ Any
It returns the value for the given key from the cache.

get_dict(*args, **kwargs)→ Dict[Any, Any]
It returns the keys and values as dictionary for all requested keys.

get_many(*args, **kwargs)→ List[Any]
It returns the list of values matching the list of keys.

has(*args, **kwargs)→ bool
It determines if the given key is in the cache.

inc(*args, **kwargs)→ Optional[int]
It increments and returns the value of a numerical cache record. Only works for Redis and Redis Sentinel!

memoize(timeout=None, make_name=None, unless=None, forced_update=None, re-
sponse_filter=None, hash_method=<built-in function openssl_md5>, cache_none=False)

Use this to cache the result of a function, taking its arguments into account in the cache key. Information
on Memoization. Example:

@cache.memoize(timeout=50)
def big_foo(a, b):

return a + b + random.randrange(0, 1000)

::

>>> big_foo(5, 2)
753
>>> big_foo(5, 3)
234
>>> big_foo(5, 2)
753
The returned decorated function now has three function attributes
assigned to it.

uncached
The original undecorated function. readable only

cache_timeout
The cache timeout value for this function.
For a custom value to take affect, this must be
set before the function is called.
readable and writable

make_cache_key
A function used in generating the cache_key used.
readable and writable

Parameters

• timeout – Default None. If set to an integer, will cache for that amount of time. Unit of
time is in seconds.

• make_name – Default None. If set this is a function that accepts a single argument, the
function name, and returns a new string to be used as the function name. If not set then
the function name is used.

12.3. API Reference 33

http://en.wikipedia.org/wiki/Memoization

Falcon-Caching, Release 1.1.0

• unless – Default None. Cache will always execute the caching facilities unless this
callable is true. This will bypass the caching entirely.

• forced_update – Default None. If this callable is true, cache value will be updated
regardless cache is expired or not. Useful for background renewal of cached functions.

• response_filter – Default None. If not None, the callable is invoked after the cached
funtion evaluation, and is given one arguement, the response content. If the callable returns
False, the content will not be cached. Useful to prevent caching of code 500 responses.

• hash_method – Default hashlib.md5. The hash method used to generate the keys for
cached results.

• cache_none – Default False. If set to True, add a key exists check when cache.get re-
turns None. This will likely lead to wrongly returned None values in concurrent situations
and is not recommended to use.

middleware
Falcon middleware integration

set(*args, **kwargs)→ bool
It stores the given key and value in the cache.

set_many(*args, **kwargs)→ bool
It stores multiple records based on the dictionary of keys and values provided.

class falcon_caching.Cache(config: Dict[str, Any])
This is the central class for the caching

You need to initialize this object to setup the attributes of the caching and then supply the object’s middleware
to the Falcon app.

Parameters (dict of str (config) – str): Cache config settings

cache
An initialized ‘CACHE_TYPE’ cache from the backends.

Type BaseCache

cache_args
Optional list passed during the cache class instantiation.

Type list of str

cache_options (dict of str
str): Optional dictionary passed during the cache class instantiation.

config (dict of str
str): Cache config settings

add(*args, **kwargs)→ bool
It adds a given key and value to the cache, but only if no record which such key already exists.

static cached(timeout: int)
This is the decorator used to decorate a resource class or the requested method of the resource class

clear()→ bool
It clears all cache - if the CACHE_KEY_PREFIX config attribute is used then it only removes key starting
with that prefix, otherwise it flushes the whole database.

dec(*args, **kwargs)→ Optional[int]
It decrements and returns the value of a numerical cache record. Only works for Redis and Redis Sentinel!

34 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

delete(*args, **kwargs)→ bool
It deletes the cached record based on the provided key.

delete_many(*args, **kwargs)→ bool
It deletes all cached record matching the list of keys provided.

delete_memoized(f, *args, **kwargs)
Deletes the specified functions caches, based by given parameters. If parameters are given, only the func-
tions that were memoized with them will be erased. Otherwise all versions of the caches will be forgotten.
Example:

@cache.memoize(50)
def random_func():

return random.randrange(1, 50)
@cache.memoize()
def param_func(a, b):

return a+b+random.randrange(1, 50)

::

>>> random_func()
43
>>> random_func()
43
>>> cache.delete_memoized(random_func)
>>> random_func()
16
>>> param_func(1, 2)
32
>>> param_func(1, 2)
32
>>> param_func(2, 2)
47
>>> cache.delete_memoized(param_func, 1, 2)
>>> param_func(1, 2)
13
>>> param_func(2, 2)
47

Delete memoized is also smart about instance methods vs class methods. When passing a instancemethod,
it will only clear the cache related to that instance of that object. (object uniqueness can be overridden
by defining the __repr__ method, such as user id). When passing a classmethod, it will clear all caches
related across all instances of that class. Example:

class Adder(object):
@cache.memoize()
def add(self, b):

return b + random.random()

::

>>> adder1 = Adder()
>>> adder2 = Adder()
>>> adder1.add(3)
3.23214234
>>> adder2.add(3)

(continues on next page)

12.3. API Reference 35

Falcon-Caching, Release 1.1.0

(continued from previous page)

3.60898509
>>> cache.delete_memoized(adder1.add)
>>> adder1.add(3)
3.01348673
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(Adder.add)
>>> adder1.add(3)
3.53235667
>>> adder2.add(3)
3.72341788

Parameters

• fname – The memoized function.

• *args – A list of positional parameters used with memoized function.

• **kwargs – A dict of named parameters used with memoized function.

Note: Falcon-Caching uses inspect to order kwargs into positional args when the function is memoized.
If you pass a function reference into fname, Falcon-Caching will be able to place the args/kwargs in the
proper order, and delete the positional cache. However, if delete_memoized is just called with the
name of the function, be sure to pass in potential arguments in the same order as defined in your function
as args only, otherwise Falcon-Caching will not be able to compute the same cache key and delete all
memoized versions of it.

Note: Falcon-Caching maintains an internal random version hash for the function. Using
delete_memoized will only swap out the version hash, causing the memoize function to recompute re-
sults and put them into another key. This leaves any computed caches for this memoized function within
the caching backend. It is recommended to use a very high timeout with memoize if using this function,
so that when the version hash is swapped, the old cached results would eventually be reclaimed by the
caching backend.

delete_memoized_verhash(f, *args)
Delete the version hash associated with the function. .. warning:

Performing this operation could leave keys behind that have
been created with this version hash. It is up to the application
to make sure that all keys that may have been created with this
version hash at least have timeouts so they will not sit orphaned
in the cache backend.

get(*args, **kwargs)→ Any
It returns the value for the given key from the cache.

get_dict(*args, **kwargs)→ Dict[Any, Any]
It returns the keys and values as dictionary for all requested keys.

get_many(*args, **kwargs)→ List[Any]
It returns the list of values matching the list of keys.

has(*args, **kwargs)→ bool
It determines if the given key is in the cache.

36 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

inc(*args, **kwargs)→ Optional[int]
It increments and returns the value of a numerical cache record. Only works for Redis and Redis Sentinel!

memoize(timeout=None, make_name=None, unless=None, forced_update=None, re-
sponse_filter=None, hash_method=<built-in function openssl_md5>, cache_none=False)

Use this to cache the result of a function, taking its arguments into account in the cache key. Information
on Memoization. Example:

@cache.memoize(timeout=50)
def big_foo(a, b):

return a + b + random.randrange(0, 1000)

::

>>> big_foo(5, 2)
753
>>> big_foo(5, 3)
234
>>> big_foo(5, 2)
753
The returned decorated function now has three function attributes
assigned to it.

uncached
The original undecorated function. readable only

cache_timeout
The cache timeout value for this function.
For a custom value to take affect, this must be
set before the function is called.
readable and writable

make_cache_key
A function used in generating the cache_key used.
readable and writable

Parameters

• timeout – Default None. If set to an integer, will cache for that amount of time. Unit of
time is in seconds.

• make_name – Default None. If set this is a function that accepts a single argument, the
function name, and returns a new string to be used as the function name. If not set then
the function name is used.

• unless – Default None. Cache will always execute the caching facilities unless this
callable is true. This will bypass the caching entirely.

• forced_update – Default None. If this callable is true, cache value will be updated
regardless cache is expired or not. Useful for background renewal of cached functions.

• response_filter – Default None. If not None, the callable is invoked after the cached
funtion evaluation, and is given one arguement, the response content. If the callable returns
False, the content will not be cached. Useful to prevent caching of code 500 responses.

• hash_method – Default hashlib.md5. The hash method used to generate the keys for
cached results.

• cache_none – Default False. If set to True, add a key exists check when cache.get re-
turns None. This will likely lead to wrongly returned None values in concurrent situations
and is not recommended to use.

12.3. API Reference 37

http://en.wikipedia.org/wiki/Memoization

Falcon-Caching, Release 1.1.0

middleware
Falcon middleware integration

set(*args, **kwargs)→ bool
It stores the given key and value in the cache.

set_many(*args, **kwargs)→ bool
It stores multiple records based on the dictionary of keys and values provided.

Backends

BaseCache

class falcon_caching.backends.base.BaseCache(default_timeout=300)
Baseclass for the cache systems. All the cache systems implement this API or a superset of it.

Parameters default_timeout – The default timeout (in seconds) that is used if no timeout is
specified on set(). A timeout of 0 indicates that the cache never expires.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Same as set(), but also False for already existing keys.

Return type boolean

clear()
Clears the cache. Keep in mind that not all caches support completely clearing the cache.

Returns Whether the cache has been cleared.

Return type boolean

dec(key, delta=1)
Decrements the value of a key by delta. If the key does not yet exist it is initialized with -delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to subtract.

Returns The new value or None for backend errors.

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

38 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

delete_many(*keys)
Deletes multiple keys at once.

Parameters keys – The function accepts multiple keys as positional arguments.

Returns Whether all given keys have been deleted.

Return type boolean

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

get_dict(*keys)
Like get_many() but return a dict:

d = cache.get_dict("foo", "bar")
foo = d["foo"]
bar = d["bar"]

Parameters keys – The function accepts multiple keys as positional arguments.

get_many(*keys)
Returns a list of values for the given keys. For each key an item in the list is created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

Parameters keys – The function accepts multiple keys as positional arguments.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

inc(key, delta=1)
Increments the value of a key by delta. If the key does not yet exist it is initialized with delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to add.

Returns The new value or None for backend errors.

set(key, value, timeout=None)
Add a new key/value to the cache (overwrites value, if key already exists in the cache).

Parameters

• key – the key to set

• value – the value for the key

12.3. API Reference 39

Falcon-Caching, Release 1.1.0

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 indicates that the cache never expires.

Returns True if key has been updated, False for backend errors. Pickling errors, however,
will raise a subclass of pickle.PickleError.

Return type boolean

set_many(mapping, timeout=None)
Sets multiple keys and values from a mapping.

Parameters

• mapping – a mapping with the keys/values to set.

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Whether all given keys have been set.

Return type boolean

NullCache

class falcon_caching.backends.NullCache(default_timeout=300)
A cache that doesn’t cache. This can be useful for unit testing.

Parameters default_timeout – a dummy parameter that is ignored but exists for API compat-
ibility with other caches.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

SimpleCache

class falcon_caching.backends.SimpleCache(threshold=500, default_timeout=300, ig-
nore_errors=False)

Simple memory cache for single process environments. This class exists mainly for the development server and
is not 100% thread safe. It tries to use as many atomic operations as possible and no locks for simplicity but it
could happen under heavy load that keys are added multiple times.

Parameters

• threshold – the maximum number of items the cache stores before it starts deleting
some.

• default_timeout – the default timeout that is used if no timeout is specified on set().
A timeout of 0 indicates that the cache never expires.

• ignore_errors – If set to True the delete_many() method will ignore any errors
that occured during the deletion process. However, if it is set to False it will stop on the
first error. Defaults to False.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

40 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Same as set(), but also False for already existing keys.

Return type boolean

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

set(key, value, timeout=None)
Add a new key/value to the cache (overwrites value, if key already exists in the cache).

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 indicates that the cache never expires.

Returns True if key has been updated, False for backend errors. Pickling errors, however,
will raise a subclass of pickle.PickleError.

Return type boolean

FileSystemCache

class falcon_caching.backends.FileSystemCache(cache_dir, threshold=500, de-
fault_timeout=300, mode=384,
hash_method=<built-in function
openssl_md5>, ignore_errors=False)

A cache that stores the items on the file system. This cache depends on being the only user of the cache_dir.
Make absolutely sure that nobody but this cache stores files there or otherwise the cache will randomly delete
files therein.

Parameters

12.3. API Reference 41

Falcon-Caching, Release 1.1.0

• cache_dir – the directory where cache files are stored.

• threshold – the maximum number of items the cache stores before it starts deleting
some. A threshold value of 0 indicates no threshold.

• default_timeout – the default timeout that is used if no timeout is specified on set().
A timeout of 0 indicates that the cache never expires.

• mode – the file mode wanted for the cache files, default 0600

• hash_method – Default hashlib.md5. The hash method used to generate the filename for
cached results.

• ignore_errors – If set to True the delete_many() method will ignore any errors
that occured during the deletion process. However, if it is set to False it will stop on the
first error. Defaults to False.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Same as set(), but also False for already existing keys.

Return type boolean

clear()
Clears the cache. Keep in mind that not all caches support completely clearing the cache.

Returns Whether the cache has been cleared.

Return type boolean

delete(key, mgmt_element=False)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

set(key, value, timeout=None, mgmt_element=False)
Add a new key/value to the cache (overwrites value, if key already exists in the cache).

42 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 indicates that the cache never expires.

Returns True if key has been updated, False for backend errors. Pickling errors, however,
will raise a subclass of pickle.PickleError.

Return type boolean

RedisCache

class falcon_caching.backends.Redis(host=’localhost’, port=6379, password=None, db=0, de-
fault_timeout=300, key_prefix=None, **kwargs)

Uses the Redis key-value store as a cache backend.

The first argument can be either a string denoting address of the Redis server or an object resembling an instance
of a redis.Redis class.

Note: Python Redis API already takes care of encoding unicode strings on the fly.

Parameters

• host – address of the Redis server or an object which API is compatible with the official
Python Redis client (redis-py).

• port – port number on which Redis server listens for connections.

• password – password authentication for the Redis server.

• db – db (zero-based numeric index) on Redis Server to connect.

• default_timeout – the default timeout that is used if no timeout is specified on set().
A timeout of 0 indicates that the cache never expires.

• key_prefix – A prefix that should be added to all keys.

Any additional keyword arguments will be passed to redis.Redis.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Same as set(), but also False for already existing keys.

Return type boolean

clear()
Clears the cache. Keep in mind that not all caches support completely clearing the cache.

Returns Whether the cache has been cleared.

Return type boolean

12.3. API Reference 43

Falcon-Caching, Release 1.1.0

dec(key, delta=1)
Decrements the value of a key by delta. If the key does not yet exist it is initialized with -delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to subtract.

Returns The new value or None for backend errors.

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

delete_many(*keys)
Deletes multiple keys at once.

Parameters keys – The function accepts multiple keys as positional arguments.

Returns Whether all given keys have been deleted.

Return type boolean

dump_object(value)
Dumps an object into a string for redis. By default it serializes integers as regular string and pickle dumps
everything else.

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

get_many(*keys)
Returns a list of values for the given keys. For each key an item in the list is created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

Parameters keys – The function accepts multiple keys as positional arguments.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

inc(key, delta=1)
Increments the value of a key by delta. If the key does not yet exist it is initialized with delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

44 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

• delta – the delta to add.

Returns The new value or None for backend errors.

load_object(value)
The reversal of dump_object(). This might be called with None.

set(key, value, timeout=None)
Add a new key/value to the cache (overwrites value, if key already exists in the cache).

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 indicates that the cache never expires.

Returns True if key has been updated, False for backend errors. Pickling errors, however,
will raise a subclass of pickle.PickleError.

Return type boolean

set_many(mapping, timeout=None)
Sets multiple keys and values from a mapping.

Parameters

• mapping – a mapping with the keys/values to set.

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Whether all given keys have been set.

Return type boolean

unlink(*keys)
when redis-py >= 3.0.0 and redis > 4, support this operation

RedisSentinelCache

class falcon_caching.backends.RedisSentinel(sentinels=None, master=None, pass-
word=None, db=0, default_timeout=300,
key_prefix=None, **kwargs)

Uses the Redis key-value store as a cache backend.

The first argument can be either a string denoting address of the Redis server or an object resembling an instance
of a redis.Redis class.

Note: Python Redis API already takes care of encoding unicode strings on the fly.

Parameters

• sentinels – A list or a tuple of Redis sentinel addresses.

• master – The name of the master server in a sentinel configuration.

• password – password authentication for the Redis server.

• db – db (zero-based numeric index) on Redis Server to connect.

• default_timeout – the default timeout that is used if no timeout is specified on set().
A timeout of 0 indicates that the cache never expires.

12.3. API Reference 45

Falcon-Caching, Release 1.1.0

• key_prefix – A prefix that should be added to all keys.

Any additional keyword arguments will be passed to redis.sentinel.Sentinel.

UWSGICache

class falcon_caching.backends.UWSGICache(default_timeout=300, cache=”)
Implements the cache using uWSGI’s caching framework.

Note: This class cannot be used when running under PyPy, because the uWSGI API implementation for PyPy
is lacking the needed functionality.

Parameters

• default_timeout – The default timeout in seconds.

• cache – The name of the caching instance to connect to, for example: my-
cache@localhost:3031, defaults to an empty string, which means uWSGI will cache in the
local instance. If the cache is in the same instance as the werkzeug app, you only have to
provide the name of the cache.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Same as set(), but also False for already existing keys.

Return type boolean

clear()
Clears the cache. Keep in mind that not all caches support completely clearing the cache.

Returns Whether the cache has been cleared.

Return type boolean

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

46 Chapter 12. Recipes

mailto:mycache@localhost
mailto:mycache@localhost

Falcon-Caching, Release 1.1.0

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

set(key, value, timeout=None)
Add a new key/value to the cache (overwrites value, if key already exists in the cache).

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 indicates that the cache never expires.

Returns True if key has been updated, False for backend errors. Pickling errors, however,
will raise a subclass of pickle.PickleError.

Return type boolean

MemcachedCache

class falcon_caching.backends.MemcachedCache(servers=None, default_timeout=300,
key_prefix=None)

A cache that uses memcached as backend.

The first argument can either be an object that resembles the API of a memcache.Client or a tuple/list of
server addresses. In the event that a tuple/list is passed, Werkzeug tries to import the best available memcache
library.

This cache looks into the following packages/modules to find bindings for memcached:

• pylibmc

• google.appengine.api.memcached

• memcached

• libmc

Implementation notes: This cache backend works around some limitations in memcached to simplify the inter-
face. For example unicode keys are encoded to utf-8 on the fly. Methods such as get_dict() return the keys
in the same format as passed. Furthermore all get methods silently ignore key errors to not cause problems when
untrusted user data is passed to the get methods which is often the case in web applications.

Parameters

• servers – a list or tuple of server addresses or alternatively a memcache.Client or a
compatible client.

• default_timeout – the default timeout that is used if no timeout is specified on set().
A timeout of 0 indicates that the cache never expires.

• key_prefix – a prefix that is added before all keys. This makes it possible to use the
same memcached server for different applications. Keep in mind that clear() will also
clear keys with a different prefix.

add(key, value, timeout=None)
Works like set() but does not overwrite the values of already existing keys.

12.3. API Reference 47

Falcon-Caching, Release 1.1.0

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Same as set(), but also False for already existing keys.

Return type boolean

clear()
Clears the cache. Keep in mind that not all caches support completely clearing the cache.

Returns Whether the cache has been cleared.

Return type boolean

dec(key, delta=1)
Decrements the value of a key by delta. If the key does not yet exist it is initialized with -delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to subtract.

Returns The new value or None for backend errors.

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

delete_many(*keys)
Deletes multiple keys at once.

Parameters keys – The function accepts multiple keys as positional arguments.

Returns Whether all given keys have been deleted.

Return type boolean

get(key)
Look up key in the cache and return the value for it.

Parameters key – the key to be looked up.

Returns The value if it exists and is readable, else None.

get_dict(*keys)
Like get_many() but return a dict:

d = cache.get_dict("foo", "bar")
foo = d["foo"]
bar = d["bar"]

Parameters keys – The function accepts multiple keys as positional arguments.

48 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

get_many(*keys)
Returns a list of values for the given keys. For each key an item in the list is created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

Parameters keys – The function accepts multiple keys as positional arguments.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

import_preferred_memcache_lib(servers)
Returns an initialized memcache client. Used by the constructor.

inc(key, delta=1)
Increments the value of a key by delta. If the key does not yet exist it is initialized with delta.

For supporting caches this is an atomic operation.

Parameters

• key – the key to increment.

• delta – the delta to add.

Returns The new value or None for backend errors.

set(key, value, timeout=None)
Add a new key/value to the cache (overwrites value, if key already exists in the cache).

Parameters

• key – the key to set

• value – the value for the key

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 indicates that the cache never expires.

Returns True if key has been updated, False for backend errors. Pickling errors, however,
will raise a subclass of pickle.PickleError.

Return type boolean

set_many(mapping, timeout=None)
Sets multiple keys and values from a mapping.

Parameters

• mapping – a mapping with the keys/values to set.

• timeout – the cache timeout for the key in seconds (if not specified, it uses the default
timeout). A timeout of 0 idicates that the cache never expires.

Returns Whether all given keys have been set.

Return type boolean

12.3. API Reference 49

Falcon-Caching, Release 1.1.0

SASLMemcachedCache

class falcon_caching.backends.SASLMemcachedCache(servers=None, default_timeout=300,
key_prefix=None, username=None,
password=None, **kwargs)

SpreadSASLMemcachedCache

class falcon_caching.backends.SpreadSASLMemcachedCache(*args, **kwargs)
Simple Subclass of SASLMemcached client that will spread the value across multiple keys if they are bigger
than a given treshold.

Spreading requires using pickle to store the value, which can significantly impact the performance.

delete(key)
Delete key from the cache.

Parameters key – the key to delete.

Returns Whether the key existed and has been deleted.

Return type boolean

delete_many(*keys)
Deletes multiple keys at once.

Parameters keys – The function accepts multiple keys as positional arguments.

Returns Whether all given keys have been deleted.

Return type boolean

get(key, chunk=True)
Get a cached value.

Parameters chunk – If set to False, it will return a cached value that is spread across multiple
keys.

has(key)
Checks if a key exists in the cache without returning it. This is a cheap operation that bypasses loading the
actual data on the backend.

This method is optional and may not be implemented on all caches.

Parameters key – the key to check

set(key, value, timeout=None, chunk=True)
Set a value in cache, potentially spreading it across multiple key.

Parameters

• key – The cache key.

• value – The value to cache.

• timeout – The timeout after which the cache will be invalidated.

• chunk – If set to False, then spreading across multiple keys is disabled. This can be
faster, but it will fail if the value is bigger than the chunks. It requires you to get back the
object by specifying that it is not spread.

50 Chapter 12. Recipes

Falcon-Caching, Release 1.1.0

AsyncBackends

BaseCache

NullCache

SimpleCache

FileSystemCache

RedisCache

RedisSentinelCache

MemcachedCache

12.4 Additional Information

12.4.1 Changelog

Version 1.1.0

• coredis Python dependency (used in async) upgrade to version 3.0+ - Thanks @alisaifee!

• Dropping support for Python 3.6

Version 1.0.1

• Documentation fix - AsyncBackend API reference was missing

Version 1.0.0

• Async support has been added

• Switching CI from Travis to GitHub Actions

Version 0.3.4

• Falcon 3.0.0 has renamed the Response.body to Response.text

Version 0.3.3

• Fixing the issue with multiple decorators when @cache.cached() is not the topmost one

• Fixing document readability issues in Sphinx

12.4. Additional Information 51

Falcon-Caching, Release 1.1.0

Version 0.3.1

• Added a new memoize() method to cache arbitrary methods with their arguments

Version 0.3.0

• Cache.memoize() and Cache.delete_memoized() methods were added to allow you to cache the result of other
non-resource related functions with their argurments.

Version 0.2.0

• The Content-Type header is cached now, except when this is turned off by the
CACHE_CONTENT_TYPE_JSON_ONLY setting, see and in the docs

• Added a safer method to identify the on_ methods to decorate, see

• The request_body is no longer included in the cache key, see

Version 0.1.0

• Initial public release

12.4.2 License

MIT License

Copyright (c) 2019 Zoltan Fedor

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

• search

52 Chapter 12. Recipes

https://github.com/zoltan-fedor/falcon-caching/issues/2
https://falcon-caching.readthedocs.io/en/latest/index.html#what-gets-cached
https://github.com/zoltan-fedor/falcon-caching/issues/4
https://github.com/zoltan-fedor/falcon-caching/issues/3

Python Module Index

f
falcon_caching, 30
falcon_caching.async_backends, 51
falcon_caching.backends, 38

53

Falcon-Caching, Release 1.1.0

54 Python Module Index

Index

A
add() (falcon_caching.AsyncCache method), 30
add() (falcon_caching.backends.base.BaseCache

method), 38
add() (falcon_caching.backends.FileSystemCache

method), 42
add() (falcon_caching.backends.MemcachedCache

method), 47
add() (falcon_caching.backends.Redis method), 43
add() (falcon_caching.backends.SimpleCache method),

40
add() (falcon_caching.backends.UWSGICache

method), 46
add() (falcon_caching.Cache method), 34
AsyncCache (class in falcon_caching), 30

B
BaseCache (class in falcon_caching.backends.base),

38

C
Cache (class in falcon_caching), 34
cache (falcon_caching.AsyncCache attribute), 30
cache (falcon_caching.Cache attribute), 34
cache_args (falcon_caching.AsyncCache attribute),

30
cache_args (falcon_caching.Cache attribute), 34
cached() (falcon_caching.AsyncCache method), 31
cached() (falcon_caching.Cache static method), 34
clear() (falcon_caching.AsyncCache method), 31
clear() (falcon_caching.backends.base.BaseCache

method), 38
clear() (falcon_caching.backends.FileSystemCache

method), 42
clear() (falcon_caching.backends.MemcachedCache

method), 48
clear() (falcon_caching.backends.Redis method), 43
clear() (falcon_caching.backends.UWSGICache

method), 46

clear() (falcon_caching.Cache method), 34

D
dec() (falcon_caching.AsyncCache method), 31
dec() (falcon_caching.backends.base.BaseCache

method), 38
dec() (falcon_caching.backends.MemcachedCache

method), 48
dec() (falcon_caching.backends.Redis method), 43
dec() (falcon_caching.Cache method), 34
delete() (falcon_caching.AsyncCache method), 31
delete() (falcon_caching.backends.base.BaseCache

method), 38
delete() (falcon_caching.backends.FileSystemCache

method), 42
delete() (falcon_caching.backends.MemcachedCache

method), 48
delete() (falcon_caching.backends.Redis method), 44
delete() (falcon_caching.backends.SimpleCache

method), 41
delete() (falcon_caching.backends.SpreadSASLMemcachedCache

method), 50
delete() (falcon_caching.backends.UWSGICache

method), 46
delete() (falcon_caching.Cache method), 34
delete_many() (falcon_caching.AsyncCache

method), 31
delete_many() (fal-

con_caching.backends.base.BaseCache
method), 38

delete_many() (fal-
con_caching.backends.MemcachedCache
method), 48

delete_many() (falcon_caching.backends.Redis
method), 44

delete_many() (fal-
con_caching.backends.SpreadSASLMemcachedCache
method), 50

delete_many() (falcon_caching.Cache method), 35

55

Falcon-Caching, Release 1.1.0

delete_memoized() (falcon_caching.AsyncCache
method), 31

delete_memoized() (falcon_caching.Cache
method), 35

delete_memoized_verhash() (fal-
con_caching.AsyncCache method), 32

delete_memoized_verhash() (fal-
con_caching.Cache method), 36

dump_object() (falcon_caching.backends.Redis
method), 44

F
falcon_caching (module), 30
falcon_caching.async_backends (module), 51
falcon_caching.backends (module), 38
FileSystemCache (class in fal-

con_caching.backends), 41

G
get() (falcon_caching.AsyncCache method), 33
get() (falcon_caching.backends.base.BaseCache

method), 39
get() (falcon_caching.backends.FileSystemCache

method), 42
get() (falcon_caching.backends.MemcachedCache

method), 48
get() (falcon_caching.backends.Redis method), 44
get() (falcon_caching.backends.SimpleCache method),

41
get() (falcon_caching.backends.SpreadSASLMemcachedCache

method), 50
get() (falcon_caching.backends.UWSGICache

method), 46
get() (falcon_caching.Cache method), 36
get_dict() (falcon_caching.AsyncCache method), 33
get_dict() (falcon_caching.backends.base.BaseCache

method), 39
get_dict() (falcon_caching.backends.MemcachedCache

method), 48
get_dict() (falcon_caching.Cache method), 36
get_many() (falcon_caching.AsyncCache method), 33
get_many() (falcon_caching.backends.base.BaseCache

method), 39
get_many() (falcon_caching.backends.MemcachedCache

method), 48
get_many() (falcon_caching.backends.Redis method),

44
get_many() (falcon_caching.Cache method), 36

H
has() (falcon_caching.AsyncCache method), 33
has() (falcon_caching.backends.base.BaseCache

method), 39

has() (falcon_caching.backends.FileSystemCache
method), 42

has() (falcon_caching.backends.MemcachedCache
method), 49

has() (falcon_caching.backends.NullCache method),
40

has() (falcon_caching.backends.Redis method), 44
has() (falcon_caching.backends.SimpleCache method),

41
has() (falcon_caching.backends.SpreadSASLMemcachedCache

method), 50
has() (falcon_caching.backends.UWSGICache

method), 46
has() (falcon_caching.Cache method), 36

I
import_preferred_memcache_lib() (fal-

con_caching.backends.MemcachedCache
method), 49

inc() (falcon_caching.AsyncCache method), 33
inc() (falcon_caching.backends.base.BaseCache

method), 39
inc() (falcon_caching.backends.MemcachedCache

method), 49
inc() (falcon_caching.backends.Redis method), 44
inc() (falcon_caching.Cache method), 37

L
load_object() (falcon_caching.backends.Redis

method), 45

M
MemcachedCache (class in falcon_caching.backends),

47
memoize() (falcon_caching.AsyncCache method), 33
memoize() (falcon_caching.Cache method), 37
middleware (falcon_caching.AsyncCache attribute),

34
middleware (falcon_caching.Cache attribute), 37

N
NullCache (class in falcon_caching.backends), 40

R
Redis (class in falcon_caching.backends), 43
RedisSentinel (class in falcon_caching.backends),

45

S
SASLMemcachedCache (class in fal-

con_caching.backends), 50
set() (falcon_caching.AsyncCache method), 34
set() (falcon_caching.backends.base.BaseCache

method), 39

56 Index

Falcon-Caching, Release 1.1.0

set() (falcon_caching.backends.FileSystemCache
method), 42

set() (falcon_caching.backends.MemcachedCache
method), 49

set() (falcon_caching.backends.Redis method), 45
set() (falcon_caching.backends.SimpleCache method),

41
set() (falcon_caching.backends.SpreadSASLMemcachedCache

method), 50
set() (falcon_caching.backends.UWSGICache

method), 47
set() (falcon_caching.Cache method), 38
set_many() (falcon_caching.AsyncCache method), 34
set_many() (falcon_caching.backends.base.BaseCache

method), 40
set_many() (falcon_caching.backends.MemcachedCache

method), 49
set_many() (falcon_caching.backends.Redis method),

45
set_many() (falcon_caching.Cache method), 38
SimpleCache (class in falcon_caching.backends), 40
SpreadSASLMemcachedCache (class in fal-

con_caching.backends), 50

U
unlink() (falcon_caching.backends.Redis method), 45
UWSGICache (class in falcon_caching.backends), 46

Index 57

	Quickstart
	Installation
	Set Up
	Eviction strategies
	‘time-based’
	‘rest-based’
	‘rest-and-time-based’

	Backends (alias ‘CACHE_TYPE’)
	‘simple’ (the default)
	‘null’
	‘filesystem’
	‘redis’
	‘redis-sentinel’
	‘memcached’
	‘saslmemcached’
	‘spreadsaslmemcached’
	‘uwsgi’

	What gets cached
	Memoization
	Deleting memoize cache

	Configuring Falcon-Caching
	Resource level caching
	Explicitly Caching Data
	Query String
	Recipes
	Multiple decorators
	Development
	API Reference
	Additional Information

	Python Module Index
	Index

