

Welcome to Falcon-Caching’s documentation!

Version: 1.1.0

Falcon-Caching adds cache support to the
Falcon web framework [https://github.com/falconry/falcon].

It is a port of the popular
Flask-Caching [https://github.com/sh4nks/flask-caching] library to Falcon.

The library aims to be compatible with CPython 3.7+ and PyPy 3.5+.

You can use this library both with a sync (WSGI) or an async (ASGI) app,
by using the matching cache object (Cache or AsyncCache).
Throughout the documentation we will be mostly be showcasing examples
for the Cache object, but all those example could be used with the
AsyncCache object too. The Quickstart example shows both Cache
and AsyncCache side-by-side.
Obviously you should never be mixing the two in a single app, use
one or the other.

Quickstart

WSGI (alias sync) example:

import falcon
from falcon_caching import Cache

setup the cache instance
cache = Cache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:

 # mark the method as cached
 @cache.cached(timeout=600)
 def on_get(self, req, resp):
 pass

create the app with the cache middleware
you can use falcon.API() instead of falcon.App() below Falcon 3.0.0
app = falcon.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

ASGI (alias async) example:

import falcon.asgi
from falcon_caching import AsyncCache

setup the cache instance
cache = AsyncCache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:

 # mark the method as cached
 @cache.cached(timeout=600)
 async def on_get(self, req, resp):
 pass

app = falcon.asgi.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

Alternatively you could cache the whole resource (watch out for
issues mentioned in Resource level caching):

mark the whole resource as cached
@cache.cached(timeout=600)
class ThingsResource:

 def on_get(self, req, resp):
 pass

 def on_post(self, req, resp):
 pass

Warning

Be careful with the order of middlewares. The cache.middleware will
short-circuit any further processing if a cached version of that resource is found.
It will skip any remaining process_request and process_resource methods,
as well as the responder method that the request would have been routed to.
However, any process_response middleware methods will still be called.

This is why it is suggested that you add the cache.middleware following any
authentication / authorization middlewares to avoid unauthorized access of records
served directly from the cache.

Installation

Install the extension with pip:

$ pip install Falcon-Caching

Set Up

Cache is managed through a Cache and the AsyncCache instance:

import falcon
import falcon.asgi
from falcon_caching import Cache, AsyncCache

setup the cache instance
cache = Cache(# could also be 'AsyncCache'
 config=
 {
 'CACHE_EVICTION_STRATEGY': 'time-based', # how records are
 # evicted
 'CACHE_TYPE': 'simple' # backend used to store the cache
 })

class ThingsResource:
 # mark the method as cached for 600 seconds
 @cache.cached(timeout=600)
 def on_get(self, req, resp): # this could also be an async function
 pass # if AsyncCache() is used

create the app with the cache middleware
you can use falcon.API() instead of falcon.App() below Falcon 3.0.0
app = falcon.App(middleware=cache.middleware)
app = falcon.asgi.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

Eviction strategies

Once a resource is cached, there is the question of how that cached record will be evicted
from the cache - alias what ‘eviction strategy’ is followed.

Below is the list of supported strategies:

‘time-based’

The most well known eviction strategy is simply time-based, meaning that the cached record
gets evicted based on a timeout (also called TTL, time-to-live) being reached. In this case
the cached data is invalidated x seconds after it was generated.
In our library this is called ‘time-based’ eviction and it is the default eviction
strategy.

‘rest-based’

For REST APIs - which implement the
RESTful methods [https://en.wikipedia.org/wiki/Representational_state_transfer#Relationship_between_URI_and_HTTP_methods]
closely - there is another possible option, to evict records based on the definition of the
RESTful methods.

In this case GET requests are the only ones cached, but those are cached indefinitely.
They only get removed from the cache when another request
of the same resource of type PUT / PATCH / POST or DELETE arrives. This will
invalidate/evict the cached record and force the next GET request to re-cache it.
We call this ‘rest-based’ eviction strategy.

‘rest-and-time-based’

The third option is a combination of these two, where the eviction happens based on
whichever of these two events occurs first - the time expires or a PUT/PATCH/POST/DELETE
request arrives.
We call this ‘rest-and-time-based’ eviction strategy.

These eviction strategies can be set with the CACHE_EVICTION_STRATEGY config attribute -
see Configuring Falcon-Caching.

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple',
 'CACHE_EVICTION_STRATEGY': 'rest-based'
 })

If no CACHE_EVICTION_STRATEGY is provided then the ‘time-based’ strategy is used by default.

Backends (alias ‘CACHE_TYPE’)

When you are caching you have the choice of what kind of backend to
cache to, be that a Redis database, Memcached, the local process’ memory
or just files on the local filesystem.

The Falcon-Caching library offers you different backend options and made to
be extendable, so additional backend options can be added.

The type of backend used is determined by the CACHE_TYPE attribute -
see Configuring Falcon-Caching.

Below is an example of using CACHE_TYPE with value ‘simple’ - which makes
the cached records stored in the local process’ memory (not 100% thread safe!):

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple', # backend 'simple' will be used
 'CACHE_EVICTION_STRATEGY': 'time-based'
 })

Note

Credits must be given to the authors and maintainers of the
Flask-Caching [https://github.com/sh4nks/flask-caching] library,
as the structure and much of the code of our backends was ported from
their popular library.

Below is a list of available backends, alias the available CACHE_TYPE options:

‘simple’ (the default)

A simple memory cache for single process environments. This option exists
mainly for the development server and is not 100% thread safe. It tries
to use as many atomic operations as possible and no locks for simplicity,
but it could happen under heavy load that keys are added multiple times.
Do not use in production!

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple', # backend 'simple' will be used
 'CACHE_EVICTION_STRATEGY': 'time-based'
 })

‘null’

A cache that doesn’t cache. This can be useful for unit testing.

‘filesystem’

A cache that stores the items on the file system. This cache depends
on being the only user of the ‘cache_dir’. Make absolutely sure that
nobody but this cache stores files there or otherwise the cache will
randomly delete files therein.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'filesystem',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_DIR': '/tmp/falcon-cache-dedicated/',
 'CACHE_THRESHOLD': 500 # the maximum number of items the
 # cache stores before it starts
 # deleting some. A threshold value
 # of 0 indicates no threshold.
 # default: 500
 })

‘redis’

A cache that stores the items in the Redis key-value store or an
object which is API compatible with the official Python Redis
client (redis-py).

If you want to use an object which is API compatible with the official
Python Redis client (redis-py), then just supply that as an initialized object
to the CACHE_REDIS_HOST parameter.

If you use the same Redis database for other purposes too, then you are strongly
advised to specify the CACHE_KEY_PREFIX, so keys would not accidentally collide
and cache.clean() calls would only remove keys from the cache and not other records.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'redis',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_REDIS_HOST': 'localhost', # Redis host/client object
 # default: 'localhost'
 'CACHE_REDIS_PORT': 6379, # default: 6379
 'CACHE_REDIS_PASSWORD': 'MyRedisPassword', # default: None
 'CACHE_REDIS_DB': 0, # default: 0
 'CACHE_KEY_PREFIX': 'mycache' # default: None
 })

Alternatively you could also supply a Redis URL via the CACHE_REDIS_URL argument,
like redis://user:password@localhost:6379/2.

‘redis-sentinel’

A cache that stores the items in a Redis Sentinel [https://redis.io/topics/sentinel],
which is a high availability ‘load-balancer’ for a Redis cluster.

Just like for ‘redis’, if you use the same Redis database for other purposes too,
then you are strongly
advised to specify the CACHE_KEY_PREFIX, so keys would not accidentally collide
and cache.clean() calls would only remove keys from the cache and not other records.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'redissentinel'
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_REDIS_SENTINELS': [("127.0.0.1", 26379),
 ("10.0.0.1", 26379)],
 'CACHE_REDIS_SENTINEL_MASTER': 'mymaster', # default: None
 'CACHE_REDIS_PASSWORD': 'MyRedisPassword', # default: None
 'CACHE_REDIS_SENTINEL_PASSWORD': 'MyPsw', # default: None
 'CACHE_REDIS_DB': 0, # default: 0
 'CACHE_KEY_PREFIX': 'mycache' # default: None
 })

‘memcached’

A cache that stores the items in a Memcached instance or cluster.
It supports the pylibmc, memcache and the google app engine memcache libraries.

You can supply one or more server addresses via CACHE_MEMCACHED_SERVERS or
you can supply an already initialized client, an object that resembles
the API of a memcache.Client. If you have supplied a server(s) address, then
the library will pick the best memcached client library available to use.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'memcached',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",
 "127.0.0.1:11212"]
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

Note

Flask-Caching does not pass additional configuration options
to memcached backends. To add additional configuration to these caches,
directly set the configuration options on the object after instantiation:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'memcached',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",
 "127.0.0.1:11212"]
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

Break convention and set options on the _client object
directly. For pylibmc behaviors:
cache.cache._client.behaviors["tcp_nodelay"] = True

‘saslmemcached’

A cache that stores the items in an SASL-authentication protected Memcached
instance or cluster.

Just like for memcached - you can supply one or more server addresses
via CACHE_MEMCACHED_SERVERS or
you can supply an already initialized client, an object that resembles
the API of a memcache.Client.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'saslmemcached',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",
 "127.0.0.1:11212"]
 'CACHE_MEMCACHED_USERNAME': 'myuser', # default: None
 'CACHE_MEMCACHED_PASSWORD': 'MyPassword', # default: None
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

‘spreadsaslmemcached’

A subclass of the saslmemcached backend that will spread the cached values
across multiple records if they are bigger than the memcached treshold which
by default is 1M.

Spreading requires using pickle to store the value, which can significantly
impact the performance.

‘uwsgi’

Implements the cache using uWSGI’s caching framework.

To set the uwsgi caching instance to connect to, for example: mycache@localhost:3031,
use the CACHE_UWSGI_NAME argument, which defaults to an empty string, in which case
uWSGI will cache in the local instance.

This backend cannot be used when running under PyPy, because the uWSGI
API implementation for PyPy is lacking the required functionality.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'uwsgi',
 'CACHE_UWSGI_NAME': 'mycache@localhost:3031', # default: ''
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

What gets cached

You might ask the question that what (what data) is getting cached when a responder
is cached.

By default two things are cached: the response body and the response’s Content-Type header.

To be able to store these two things in the cache backend under one object,
we use msgpack [https://github.com/msgpack/msgpack-python] to serialize and then deserialize
when loading the record back from the cache. While msgpack is a fast serializer, this does take
some time.

Note

If you know that all of your cached responders are using the `Content-Type`= `application/json`
header - which is very typical for basic APIs in these days - then you don’t need the
`Content-Type` header to be cached.
This is because the `Content-Type` = `application/json` is the default in Falcon and it is added
to the response when no other value is specified.

So in case your application only generates responses with the `Content-Type` = `application/json
header, then you can turn off this serialization storing the Content-Type header and
benefit from the performance boost of not needing to serialize and deserialize messages.

You can turn off the serialization by setting `CACHE_CONTENT_TYPE_JSON_ONLY = True` in the config -
see Configuring Falcon-Caching.

New in version 0.2.

Memoization

New in version 0.3.

See Cache.memoize()

Using the @memoize decorator you are able to cache the result of other non-view related functions.
In memoization, the functions arguments are also included into the cache_key.

Note

Credits must be given to the authors and maintainers of the
Flask-Caching [https://github.com/sh4nks/flask-caching] library,
as much of the code of our memoize method was ported from
their popular library.

Outside just simple function, memoize is also designed for methods, since it will take into account
the identity [http://docs.python.org/library/functions.html#id]. of the
‘self’ or ‘cls’ argument as part of the cache key.

The theory behind memoization is that if you have a function you need
to call several times in one request, it would only be calculated the first
time that function is called with those arguments. For example, an sqlalchemy
object that determines if a user has a role. You might need to call this
function many times during a single request. To keep from hitting the database
every time this information is needed you might do something like the following:

class Person(db.Model):
 @cache.memoize(50)
 def has_membership(self, role_id):
 return Group.query.filter_by(user=self, role_id=role_id).count() >= 1

Warning

Using mutable objects (classes, etc) as part of the cache key can become
tricky. It is suggested to not pass in an object instance into a memoized
function. However, the memoize does perform a repr() on the passed in arguments
so that if the object has a __repr__ function that returns a uniquely
identifying string for that object, that will be used as part of the
cache key.

For example, an sqlalchemy person object that returns the database id as
part of the unique identifier:

class Person(db.Model):
 def __repr__(self):
 return "%s(%s)" % (self.__class__.__name__, self.id)

Deleting memoize cache

See Cache.delete_memoized()

New in version 0.3.

You might need to delete the cache on a per-function bases. Using the above
example, lets say you change the users permissions and assign them to a role,
but now you need to re-calculate if they have certain memberships or not.
You can do this with the delete_memoized() function:

cache.delete_memoized(user_has_membership)

Note

If only the function name is given as parameter, all the memoized versions
of it will be invalidated. However, you can delete specific cache by
providing the same parameter values as when caching. In following
example only the user-role cache is deleted:

user_has_membership('demo', 'admin')
user_has_membership('demo', 'user')

cache.delete_memoized(user_has_membership, 'demo', 'user')

Configuring Falcon-Caching

The following configuration values exist for Falcon-Caching:

	CACHE_EVICTION_STRATEGY

	The eviction strategy determines when a cached
resource is removed from cache.

Available eviction strategies:

	time-based: records are removed once time expires (default)

	rest-based: records are removed once a PUT/POST/PATCH/DELETE call is made against the resource

	rest-and-time-based: records are removed either by time or request method (whichever happens first)

See more at Eviction strategies

	CACHE_TYPE

	Specifies which type of caching object to
use. This is an import string that will
be imported and instantiated. It is
assumed that the import object is a
function that will return a cache
object that adheres to the cache API.

For falcon_caching.backends objects, you
do not need to specify the entire
import string, just one of the following
names.

Built-in cache types:

	null: NullCache (default)

	simple: SimpleCache

	filesystem: FileSystemCache

	redis: RedisCache (redis required)

	redissentinel: RedisSentinelCache (redis required)

	uwsgi: UWSGICache (uwsgi required)

	memcached: MemcachedCache (pylibmc or memcache required)

	gaememcached: same as memcached (for backwards compatibility)

	saslmemcached: SASLMemcachedCache (pylibmc required)

	spreadsaslmemcached: SpreadSASLMemcachedCache (pylibmc required)

	CACHE_CONTENT_TYPE_JSON_ONLY

	Set to True if all your cached responders
use the application/json Content-Type,
which will turn off serialization and
provide a performance boost. Defaults to
False.

	CACHE_NO_NULL_WARNING

	Silence the warning message when using
cache type of ‘null’.

	CACHE_ARGS

	Optional list to unpack and pass during
the cache class instantiation.

	CACHE_OPTIONS

	Optional dictionary to pass during the
cache class instantiation.

	CACHE_DEFAULT_TIMEOUT

	The default timeout that is used if no
timeout is specified. Unit of time is
seconds.

	CACHE_IGNORE_ERRORS

	If set to any errors that occurred during the
deletion process will be ignored. However, if
it is set to False it will stop on the
first error. This option is only relevant for
the backends filesystem and simple.
Defaults to False.

	CACHE_THRESHOLD

	The maximum number of items the cache
will store before it starts deleting
some. Used only for SimpleCache and
FileSystemCache

	CACHE_KEY_PREFIX

	A prefix that is added before all keys.
This makes it possible to use the same
memcached server for different apps.
Used only for RedisCache and MemcachedCache

	CACHE_UWSGI_NAME

	The name of the uwsgi caching instance to
connect to, for example: mycache@localhost:3031,
defaults to an empty string, which means uWSGI
will cache in the local instance.

	CACHE_MEMCACHED_SERVERS

	A list or a tuple of server addresses.
Used only for MemcachedCache

	CACHE_MEMCACHED_USERNAME

	Username for SASL authentication with memcached.
Used only for SASLMemcachedCache

	CACHE_MEMCACHED_PASSWORD

	Password for SASL authentication with memcached.
Used only for SASLMemcachedCache

	CACHE_REDIS_HOST

	A Redis server host. Used only for RedisCache.

	CACHE_REDIS_PORT

	A Redis server port. Default is 6379.
Used only for RedisCache.

	CACHE_REDIS_PASSWORD

	A Redis password for server. Used only for RedisCache and
RedisSentinelCache.

	CACHE_REDIS_DB

	A Redis db (zero-based number index). Default is 0.
Used only for RedisCache and RedisSentinelCache.

	CACHE_REDIS_SENTINELS

	A list or a tuple of Redis sentinel addresses. Used only for
RedisSentinelCache.

	CACHE_REDIS_SENTINEL_MASTER

	The name of the master server in a sentinel configuration. Used
only for RedisSentinelCache.

	CACHE_DIR

	Directory to store cache. Used only for
FileSystemCache.

	CACHE_REDIS_URL

	URL to connect to Redis server.
Example redis://user:password@localhost:6379/2. Supports
protocols redis://, rediss:// (redis over TLS) and
unix://. See more info about URL support at http://redis-py.readthedocs.io/en/latest/index.html#redis.ConnectionPool.from_url.
Used only for RedisCache.

Resource level caching

In Falcon-Caching you mark individual methods or resources to be cached by adding the
@cache.cached() decorator to them.

It is possible to add this decorator on the resource (class) level to mark the whole resource
- and so all of its 'on_' methods - as cached:

mark the whole resource as cached
which will decorate all the on_...() methods of this class
@cache.cached(timeout=600)
class ThingsResource:

 def on_get(self, req, resp):
 pass

 def on_post(self, req, resp):
 pass

BUT if any of those 'on_' methods are supposed to modify the data or have some other
non-cachable actions,
then that will NOT be executed when the response is returned from the cache - assuming
the CACHE_EVICTION_STRATEGY is set to ‘time-based’ - which is the default.

The CACHE_EVICTION_STRATEGY values of ‘rest-based’ and ‘rest-and-time-based’ are safe,
as those invalidate the cache for any PUT/PATCH/POST/DELETE calls and do NOT serve the response
from the cache for those methods.

This happens because the cache.middleware short-circuits any further processing
if a cached version of that item is found.
If a cached version is found then it will skip any remaining process_request and
process_resource methods, as well as the responder method that the request would
have been routed to.
However, any process_response middleware methods will still be called.

We suggest that you only use the resource level (eg class) decorator if you use
the CACHE_EVICTION_STRATEGY of ‘rest-based’ or ‘rest-and-time-based’ and NOT
if you use the ‘time-based’ strategy. The only exception to this rule of thumb could be if
(1) you are certain that all the methods of that resource can be served from the cache or
(2) all the actions for those methods are taken in process_response phase.

Explicitly Caching Data

Data can be cached explicitly by using the proxy methods like
Cache.set(), and Cache.get() directly. There are many other proxy
methods available via the Cache class - see them listed below.

For example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple',
 'CACHE_EVICTION_STRATEGY': 'rest-based'
 })

...

def test(foo=None):
 if foo is not None:
 cache.set("foo", foo) # saving a value into the cache
 bar = cache.get("foo") # retrieving the value from the cache

Supported methods:

cache.set("foo", "bar")
cache.has("foo")
cache.get("foo")
cache.add("foo", "bar") # like set, except it doesn't overwrite
cache.set_many({"foo": "bar", "foo2": "bar2"})
cache.get_many(["foo", "foo2"]) # returns a list
cache.get_dict(["foo", "foo2"]) # returns a dict
cache.delete("foo")
cache.delete_many("foo", "foo2")
cache.set("foo3", 1)
cache.inc("foo3") # increment, only supported by Redis&Redis Sentinel
cache.dec("foo3") # decrement, only supported by Redis&Redis Sentinel
cache.clear() # clears all cache - not supported by all backends
 # WARNING: some implementations (Redis) will flush
 # the whole database!!!

Query String

Currently the query string [https://falcon.readthedocs.io/en/stable/api/request_and_response.html#falcon.Request.query_string]
is NOT used in the cache key, so two requests which only differ in the query string will be cached
against the same key.

Recipes

Multiple decorators

For scenarios where there is a need for multiple decorators and the @cache.cached() cannot be the
topmost one, we need to register the decorators a special way.

This scenario is complicated because our @cache.cached() just marks the fact that the given
method is decorated with a cache, which later gets picked up by the middleware and triggers caching. If the
@cache.cached() is the topmost
decorator then it is easy to pick that up, but if there are other decorators ‘ahead’ it, then those
will ‘hide’ the @cache.cached(). This is because decorators in Python are just syntactic sugar
for nested function calls.

To be able to tell if the given endpoint was decorated by the @cache.cached() decorator when that is NOT
the topmost decorator, you need to decorate your method by registering your decorators using the
@register() helper decorator.

See more about this issue at
https://stackoverflow.com/questions/3232024/introspection-to-get-decorator-names-on-a-method

import falcon
from falcon_caching import Cache
from falcon_caching.utils import register

limiter = Limiter(
 key_func=get_remote_addr,
 default_limits=["10 per hour", "2 per minute"]
)

cache = Cache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:
 # this is fine, as the @cache.cached() is the topmost (eg the first) decorator:
 @cache.cached(timeout=600)
 @another_decorator
 def on_get(self, req, resp):
 pass

class ThingsResource2:
 # the @cache.cached() is NOT the topmost decorator, so
 # this would NOT work - the cache decorator would be ignored!!!!
 # DO NOT DO THIS:
 @another_decorator
 @cache.cached(timeout=600)
 def on_get(self, req, resp):
 pass

class ThingsResource3:
 # use your decorators this way:
 @register(another_decorator, cache.cached(timeout=600))
 def on_get(self, req, resp):
 pass

Development

For development guidelines see
https://github.com/zoltan-fedor/falcon-caching#development

API Reference

If you are looking for information on a specific function, class or
method of a service, then this part of the documentation is for you.

	API Reference Guide
	Cache API

	Backends

	AsyncBackends

Additional Information

	Changelog
	Version 1.1.0

	Version 1.0.1

	Version 1.0.0

	Version 0.3.4

	Version 0.3.3

	Version 0.3.1

	Version 0.3.0

	Version 0.2.0

	Version 0.1.0

	License

	Search Page

API Reference Guide

Cache API

Falcon-Caching - a caching module for the Falcon web framework

	
class falcon_caching.AsyncCache(config: Dict[str, Any])

	This is the central class for the caching

You need to initialize this object to setup the attributes of the caching
and then supply the object’s middleware to the Falcon app.

	Parameters

	(dict of str (config) – str): Cache config settings

	
cache

	An initialized ‘CACHE_TYPE’ cache from the backends.

	Type

	BaseCache

	
cache_args

	Optional list passed during the cache class instantiation.

	Type

	list of str

	
cache_options (dict of str

	str): Optional dictionary passed during the cache class instantiation.

	
config (dict of str

	str): Cache config settings

	
add(*args, **kwargs) → bool

	It adds a given key and value to the cache, but only
if no record which such key already exists.

	
cached(timeout: int)

	This is the decorator used to decorate a resource class or the requested
method of the resource class

	
clear() → bool

	It clears all cache - if the CACHE_KEY_PREFIX config attribute
is used then it only removes key starting with that prefix, otherwise
it flushes the whole database.

	
dec(*args, **kwargs) → Optional[int]

	It decrements and returns the value of a numerical cache record.
Only works for Redis and Redis Sentinel!

	
delete(*args, **kwargs) → bool

	It deletes the cached record based on the provided key.

	
delete_many(*args, **kwargs) → bool

	It deletes all cached record matching the list of keys provided.

	
delete_memoized(f, *args, **kwargs)

	Deletes the specified functions caches, based by given parameters.
If parameters are given, only the functions that were memoized
with them will be erased. Otherwise all versions of the caches
will be forgotten.
Example:

@cache.memoize(50)
def random_func():
 return random.randrange(1, 50)
@cache.memoize()
def param_func(a, b):
 return a+b+random.randrange(1, 50)

	::

	>>> random_func()
43
>>> random_func()
43
>>> cache.delete_memoized(random_func)
>>> random_func()
16
>>> param_func(1, 2)
32
>>> param_func(1, 2)
32
>>> param_func(2, 2)
47
>>> cache.delete_memoized(param_func, 1, 2)
>>> param_func(1, 2)
13
>>> param_func(2, 2)
47

Delete memoized is also smart about instance methods vs class methods.
When passing a instancemethod, it will only clear the cache related
to that instance of that object. (object uniqueness can be overridden
by defining the __repr__ method, such as user id).
When passing a classmethod, it will clear all caches related across
all instances of that class.
Example:

class Adder(object):
 @cache.memoize()
 def add(self, b):
 return b + random.random()

	::

	>>> adder1 = Adder()
>>> adder2 = Adder()
>>> adder1.add(3)
3.23214234
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(adder1.add)
>>> adder1.add(3)
3.01348673
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(Adder.add)
>>> adder1.add(3)
3.53235667
>>> adder2.add(3)
3.72341788

	Parameters

	
	fname – The memoized function.

	*args – A list of positional parameters used with
memoized function.

	**kwargs – A dict of named parameters used with
memoized function.

Note

Falcon-Caching uses inspect to order kwargs into positional args when
the function is memoized. If you pass a function reference into
fname, Falcon-Caching will be able to place the args/kwargs in
the proper order, and delete the positional cache.
However, if delete_memoized is just called with the name of the
function, be sure to pass in potential arguments in the same order
as defined in your function as args only, otherwise Falcon-Caching
will not be able to compute the same cache key and delete all
memoized versions of it.

Note

Falcon-Caching maintains an internal random version hash for
the function. Using delete_memoized will only swap out
the version hash, causing the memoize function to recompute
results and put them into another key.
This leaves any computed caches for this memoized function within
the caching backend.
It is recommended to use a very high timeout with memoize if using
this function, so that when the version hash is swapped, the old
cached results would eventually be reclaimed by the caching
backend.

	
delete_memoized_verhash(f, *args)

	Delete the version hash associated with the function.
.. warning:

Performing this operation could leave keys behind that have
been created with this version hash. It is up to the application
to make sure that all keys that may have been created with this
version hash at least have timeouts so they will not sit orphaned
in the cache backend.

	
get(*args, **kwargs) → Any

	It returns the value for the given key from the cache.

	
get_dict(*args, **kwargs) → Dict[Any, Any]

	It returns the keys and values as dictionary for all requested keys.

	
get_many(*args, **kwargs) → List[Any]

	It returns the list of values matching the list of keys.

	
has(*args, **kwargs) → bool

	It determines if the given key is in the cache.

	
inc(*args, **kwargs) → Optional[int]

	It increments and returns the value of a numerical cache record.
Only works for Redis and Redis Sentinel!

	
memoize(timeout=None, make_name=None, unless=None, forced_update=None, response_filter=None, hash_method=<built-in function openssl_md5>, cache_none=False)

	Use this to cache the result of a function, taking its arguments
into account in the cache key.
Information on
Memoization [http://en.wikipedia.org/wiki/Memoization].
Example:

@cache.memoize(timeout=50)
def big_foo(a, b):
 return a + b + random.randrange(0, 1000)

	::

	>>> big_foo(5, 2)
753
>>> big_foo(5, 3)
234
>>> big_foo(5, 2)
753
The returned decorated function now has three function attributes
assigned to it.
 uncached
 The original undecorated function. readable only
 cache_timeout
 The cache timeout value for this function.
 For a custom value to take affect, this must be
 set before the function is called.
 readable and writable
 make_cache_key
 A function used in generating the cache_key used.
 readable and writable

	Parameters

	
	timeout – Default None. If set to an integer, will cache for that
amount of time. Unit of time is in seconds.

	make_name – Default None. If set this is a function that accepts
a single argument, the function name, and returns a
new string to be used as the function name.
If not set then the function name is used.

	unless – Default None. Cache will always execute the caching
facilities unless this callable is true.
This will bypass the caching entirely.

	forced_update – Default None. If this callable is true,
cache value will be updated regardless cache
is expired or not. Useful for background
renewal of cached functions.

	response_filter – Default None. If not None, the callable is
invoked after the cached funtion evaluation,
and is given one arguement, the response
content. If the callable returns False, the
content will not be cached. Useful to prevent
caching of code 500 responses.

	hash_method – Default hashlib.md5. The hash method used to
generate the keys for cached results.

	cache_none – Default False. If set to True, add a key exists
check when cache.get returns None. This will likely
lead to wrongly returned None values in concurrent
situations and is not recommended to use.

	
middleware

	Falcon middleware integration

	
set(*args, **kwargs) → bool

	It stores the given key and value in the cache.

	
set_many(*args, **kwargs) → bool

	It stores multiple records based on the dictionary of keys
and values provided.

	
class falcon_caching.Cache(config: Dict[str, Any])

	This is the central class for the caching

You need to initialize this object to setup the attributes of the caching
and then supply the object’s middleware to the Falcon app.

	Parameters

	(dict of str (config) – str): Cache config settings

	
cache

	An initialized ‘CACHE_TYPE’ cache from the backends.

	Type

	BaseCache

	
cache_args

	Optional list passed during the cache class instantiation.

	Type

	list of str

	
cache_options (dict of str

	str): Optional dictionary passed during the cache class instantiation.

	
config (dict of str

	str): Cache config settings

	
add(*args, **kwargs) → bool

	It adds a given key and value to the cache, but only
if no record which such key already exists.

	
static cached(timeout: int)

	This is the decorator used to decorate a resource class or the requested
method of the resource class

	
clear() → bool

	It clears all cache - if the CACHE_KEY_PREFIX config attribute
is used then it only removes key starting with that prefix, otherwise
it flushes the whole database.

	
dec(*args, **kwargs) → Optional[int]

	It decrements and returns the value of a numerical cache record.
Only works for Redis and Redis Sentinel!

	
delete(*args, **kwargs) → bool

	It deletes the cached record based on the provided key.

	
delete_many(*args, **kwargs) → bool

	It deletes all cached record matching the list of keys provided.

	
delete_memoized(f, *args, **kwargs)

	Deletes the specified functions caches, based by given parameters.
If parameters are given, only the functions that were memoized
with them will be erased. Otherwise all versions of the caches
will be forgotten.
Example:

@cache.memoize(50)
def random_func():
 return random.randrange(1, 50)
@cache.memoize()
def param_func(a, b):
 return a+b+random.randrange(1, 50)

	::

	>>> random_func()
43
>>> random_func()
43
>>> cache.delete_memoized(random_func)
>>> random_func()
16
>>> param_func(1, 2)
32
>>> param_func(1, 2)
32
>>> param_func(2, 2)
47
>>> cache.delete_memoized(param_func, 1, 2)
>>> param_func(1, 2)
13
>>> param_func(2, 2)
47

Delete memoized is also smart about instance methods vs class methods.
When passing a instancemethod, it will only clear the cache related
to that instance of that object. (object uniqueness can be overridden
by defining the __repr__ method, such as user id).
When passing a classmethod, it will clear all caches related across
all instances of that class.
Example:

class Adder(object):
 @cache.memoize()
 def add(self, b):
 return b + random.random()

	::

	>>> adder1 = Adder()
>>> adder2 = Adder()
>>> adder1.add(3)
3.23214234
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(adder1.add)
>>> adder1.add(3)
3.01348673
>>> adder2.add(3)
3.60898509
>>> cache.delete_memoized(Adder.add)
>>> adder1.add(3)
3.53235667
>>> adder2.add(3)
3.72341788

	Parameters

	
	fname – The memoized function.

	*args – A list of positional parameters used with
memoized function.

	**kwargs – A dict of named parameters used with
memoized function.

Note

Falcon-Caching uses inspect to order kwargs into positional args when
the function is memoized. If you pass a function reference into
fname, Falcon-Caching will be able to place the args/kwargs in
the proper order, and delete the positional cache.
However, if delete_memoized is just called with the name of the
function, be sure to pass in potential arguments in the same order
as defined in your function as args only, otherwise Falcon-Caching
will not be able to compute the same cache key and delete all
memoized versions of it.

Note

Falcon-Caching maintains an internal random version hash for
the function. Using delete_memoized will only swap out
the version hash, causing the memoize function to recompute
results and put them into another key.
This leaves any computed caches for this memoized function within
the caching backend.
It is recommended to use a very high timeout with memoize if using
this function, so that when the version hash is swapped, the old
cached results would eventually be reclaimed by the caching
backend.

	
delete_memoized_verhash(f, *args)

	Delete the version hash associated with the function.
.. warning:

Performing this operation could leave keys behind that have
been created with this version hash. It is up to the application
to make sure that all keys that may have been created with this
version hash at least have timeouts so they will not sit orphaned
in the cache backend.

	
get(*args, **kwargs) → Any

	It returns the value for the given key from the cache.

	
get_dict(*args, **kwargs) → Dict[Any, Any]

	It returns the keys and values as dictionary for all requested keys.

	
get_many(*args, **kwargs) → List[Any]

	It returns the list of values matching the list of keys.

	
has(*args, **kwargs) → bool

	It determines if the given key is in the cache.

	
inc(*args, **kwargs) → Optional[int]

	It increments and returns the value of a numerical cache record.
Only works for Redis and Redis Sentinel!

	
memoize(timeout=None, make_name=None, unless=None, forced_update=None, response_filter=None, hash_method=<built-in function openssl_md5>, cache_none=False)

	Use this to cache the result of a function, taking its arguments
into account in the cache key.
Information on
Memoization [http://en.wikipedia.org/wiki/Memoization].
Example:

@cache.memoize(timeout=50)
def big_foo(a, b):
 return a + b + random.randrange(0, 1000)

	::

	>>> big_foo(5, 2)
753
>>> big_foo(5, 3)
234
>>> big_foo(5, 2)
753
The returned decorated function now has three function attributes
assigned to it.
 uncached
 The original undecorated function. readable only
 cache_timeout
 The cache timeout value for this function.
 For a custom value to take affect, this must be
 set before the function is called.
 readable and writable
 make_cache_key
 A function used in generating the cache_key used.
 readable and writable

	Parameters

	
	timeout – Default None. If set to an integer, will cache for that
amount of time. Unit of time is in seconds.

	make_name – Default None. If set this is a function that accepts
a single argument, the function name, and returns a
new string to be used as the function name.
If not set then the function name is used.

	unless – Default None. Cache will always execute the caching
facilities unless this callable is true.
This will bypass the caching entirely.

	forced_update – Default None. If this callable is true,
cache value will be updated regardless cache
is expired or not. Useful for background
renewal of cached functions.

	response_filter – Default None. If not None, the callable is
invoked after the cached funtion evaluation,
and is given one arguement, the response
content. If the callable returns False, the
content will not be cached. Useful to prevent
caching of code 500 responses.

	hash_method – Default hashlib.md5. The hash method used to
generate the keys for cached results.

	cache_none – Default False. If set to True, add a key exists
check when cache.get returns None. This will likely
lead to wrongly returned None values in concurrent
situations and is not recommended to use.

	
middleware

	Falcon middleware integration

	
set(*args, **kwargs) → bool

	It stores the given key and value in the cache.

	
set_many(*args, **kwargs) → bool

	It stores multiple records based on the dictionary of keys
and values provided.

Backends

BaseCache

	
class falcon_caching.backends.base.BaseCache(default_timeout=300)

	Baseclass for the cache systems. All the cache systems implement this
API or a superset of it.

	Parameters

	default_timeout – The default timeout (in seconds) that is used if
no timeout is specified on set(). A timeout
of 0 indicates that the cache never expires.

	
add(key, value, timeout=None)

	Works like set() but does not overwrite the values of already
existing keys.

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Same as set(), but also False for already
existing keys.

	Return type

	boolean

	
clear()

	Clears the cache. Keep in mind that not all caches support
completely clearing the cache.

	Returns

	Whether the cache has been cleared.

	Return type

	boolean

	
dec(key, delta=1)

	Decrements the value of a key by delta. If the key does
not yet exist it is initialized with -delta.

For supporting caches this is an atomic operation.

	Parameters

	
	key – the key to increment.

	delta – the delta to subtract.

	Returns

	The new value or None for backend errors.

	
delete(key)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
delete_many(*keys)

	Deletes multiple keys at once.

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	Returns

	Whether all given keys have been deleted.

	Return type

	boolean

	
get(key)

	Look up key in the cache and return the value for it.

	Parameters

	key – the key to be looked up.

	Returns

	The value if it exists and is readable, else None.

	
get_dict(*keys)

	Like get_many() but return a dict:

d = cache.get_dict("foo", "bar")
foo = d["foo"]
bar = d["bar"]

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	
get_many(*keys)

	Returns a list of values for the given keys.
For each key an item in the list is created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
inc(key, delta=1)

	Increments the value of a key by delta. If the key does
not yet exist it is initialized with delta.

For supporting caches this is an atomic operation.

	Parameters

	
	key – the key to increment.

	delta – the delta to add.

	Returns

	The new value or None for backend errors.

	
set(key, value, timeout=None)

	Add a new key/value to the cache (overwrites value, if key already
exists in the cache).

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 indicates that the cache never expires.

	Returns

	True if key has been updated, False for backend
errors. Pickling errors, however, will raise a subclass of
pickle.PickleError.

	Return type

	boolean

	
set_many(mapping, timeout=None)

	Sets multiple keys and values from a mapping.

	Parameters

	
	mapping – a mapping with the keys/values to set.

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Whether all given keys have been set.

	Return type

	boolean

NullCache

	
class falcon_caching.backends.NullCache(default_timeout=300)

	A cache that doesn’t cache. This can be useful for unit testing.

	Parameters

	default_timeout – a dummy parameter that is ignored but exists
for API compatibility with other caches.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

SimpleCache

	
class falcon_caching.backends.SimpleCache(threshold=500, default_timeout=300, ignore_errors=False)

	Simple memory cache for single process environments. This class exists
mainly for the development server and is not 100% thread safe. It tries
to use as many atomic operations as possible and no locks for simplicity
but it could happen under heavy load that keys are added multiple times.

	Parameters

	
	threshold – the maximum number of items the cache stores before
it starts deleting some.

	default_timeout – the default timeout that is used if no timeout is
specified on set(). A timeout of
0 indicates that the cache never expires.

	ignore_errors – If set to True the delete_many()
method will ignore any errors that occured during the
deletion process. However, if it is set to False
it will stop on the first error. Defaults to
False.

	
add(key, value, timeout=None)

	Works like set() but does not overwrite the values of already
existing keys.

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Same as set(), but also False for already
existing keys.

	Return type

	boolean

	
delete(key)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
get(key)

	Look up key in the cache and return the value for it.

	Parameters

	key – the key to be looked up.

	Returns

	The value if it exists and is readable, else None.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
set(key, value, timeout=None)

	Add a new key/value to the cache (overwrites value, if key already
exists in the cache).

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 indicates that the cache never expires.

	Returns

	True if key has been updated, False for backend
errors. Pickling errors, however, will raise a subclass of
pickle.PickleError.

	Return type

	boolean

FileSystemCache

	
class falcon_caching.backends.FileSystemCache(cache_dir, threshold=500, default_timeout=300, mode=384, hash_method=<built-in function openssl_md5>, ignore_errors=False)

	A cache that stores the items on the file system. This cache depends
on being the only user of the cache_dir. Make absolutely sure that
nobody but this cache stores files there or otherwise the cache will
randomly delete files therein.

	Parameters

	
	cache_dir – the directory where cache files are stored.

	threshold – the maximum number of items the cache stores before
it starts deleting some. A threshold value of 0
indicates no threshold.

	default_timeout – the default timeout that is used if no timeout is
specified on set(). A timeout of
0 indicates that the cache never expires.

	mode – the file mode wanted for the cache files, default 0600

	hash_method – Default hashlib.md5. The hash method used to
generate the filename for cached results.

	ignore_errors – If set to True the delete_many()
method will ignore any errors that occured during the
deletion process. However, if it is set to False
it will stop on the first error. Defaults to
False.

	
add(key, value, timeout=None)

	Works like set() but does not overwrite the values of already
existing keys.

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Same as set(), but also False for already
existing keys.

	Return type

	boolean

	
clear()

	Clears the cache. Keep in mind that not all caches support
completely clearing the cache.

	Returns

	Whether the cache has been cleared.

	Return type

	boolean

	
delete(key, mgmt_element=False)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
get(key)

	Look up key in the cache and return the value for it.

	Parameters

	key – the key to be looked up.

	Returns

	The value if it exists and is readable, else None.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
set(key, value, timeout=None, mgmt_element=False)

	Add a new key/value to the cache (overwrites value, if key already
exists in the cache).

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 indicates that the cache never expires.

	Returns

	True if key has been updated, False for backend
errors. Pickling errors, however, will raise a subclass of
pickle.PickleError.

	Return type

	boolean

RedisCache

	
class falcon_caching.backends.Redis(host='localhost', port=6379, password=None, db=0, default_timeout=300, key_prefix=None, **kwargs)

	Uses the Redis key-value store as a cache backend.

The first argument can be either a string denoting address of the Redis
server or an object resembling an instance of a redis.Redis class.

Note: Python Redis API already takes care of encoding unicode strings on
the fly.

	Parameters

	
	host – address of the Redis server or an object which API is
compatible with the official Python Redis client (redis-py).

	port – port number on which Redis server listens for connections.

	password – password authentication for the Redis server.

	db – db (zero-based numeric index) on Redis Server to connect.

	default_timeout – the default timeout that is used if no timeout is
specified on set(). A timeout of
0 indicates that the cache never expires.

	key_prefix – A prefix that should be added to all keys.

Any additional keyword arguments will be passed to redis.Redis.

	
add(key, value, timeout=None)

	Works like set() but does not overwrite the values of already
existing keys.

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Same as set(), but also False for already
existing keys.

	Return type

	boolean

	
clear()

	Clears the cache. Keep in mind that not all caches support
completely clearing the cache.

	Returns

	Whether the cache has been cleared.

	Return type

	boolean

	
dec(key, delta=1)

	Decrements the value of a key by delta. If the key does
not yet exist it is initialized with -delta.

For supporting caches this is an atomic operation.

	Parameters

	
	key – the key to increment.

	delta – the delta to subtract.

	Returns

	The new value or None for backend errors.

	
delete(key)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
delete_many(*keys)

	Deletes multiple keys at once.

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	Returns

	Whether all given keys have been deleted.

	Return type

	boolean

	
dump_object(value)

	Dumps an object into a string for redis. By default it serializes
integers as regular string and pickle dumps everything else.

	
get(key)

	Look up key in the cache and return the value for it.

	Parameters

	key – the key to be looked up.

	Returns

	The value if it exists and is readable, else None.

	
get_many(*keys)

	Returns a list of values for the given keys.
For each key an item in the list is created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
inc(key, delta=1)

	Increments the value of a key by delta. If the key does
not yet exist it is initialized with delta.

For supporting caches this is an atomic operation.

	Parameters

	
	key – the key to increment.

	delta – the delta to add.

	Returns

	The new value or None for backend errors.

	
load_object(value)

	The reversal of dump_object(). This might be called with
None.

	
set(key, value, timeout=None)

	Add a new key/value to the cache (overwrites value, if key already
exists in the cache).

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 indicates that the cache never expires.

	Returns

	True if key has been updated, False for backend
errors. Pickling errors, however, will raise a subclass of
pickle.PickleError.

	Return type

	boolean

	
set_many(mapping, timeout=None)

	Sets multiple keys and values from a mapping.

	Parameters

	
	mapping – a mapping with the keys/values to set.

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Whether all given keys have been set.

	Return type

	boolean

	
unlink(*keys)

	when redis-py >= 3.0.0 and redis > 4, support this operation

RedisSentinelCache

	
class falcon_caching.backends.RedisSentinel(sentinels=None, master=None, password=None, db=0, default_timeout=300, key_prefix=None, **kwargs)

	Uses the Redis key-value store as a cache backend.

The first argument can be either a string denoting address of the Redis
server or an object resembling an instance of a redis.Redis class.

Note: Python Redis API already takes care of encoding unicode strings on
the fly.

	Parameters

	
	sentinels – A list or a tuple of Redis sentinel addresses.

	master – The name of the master server in a sentinel configuration.

	password – password authentication for the Redis server.

	db – db (zero-based numeric index) on Redis Server to connect.

	default_timeout – the default timeout that is used if no timeout is
specified on set(). A timeout of
0 indicates that the cache never expires.

	key_prefix – A prefix that should be added to all keys.

Any additional keyword arguments will be passed to
redis.sentinel.Sentinel.

UWSGICache

	
class falcon_caching.backends.UWSGICache(default_timeout=300, cache='')

	Implements the cache using uWSGI’s caching framework.

Note

This class cannot be used when running under PyPy, because the uWSGI
API implementation for PyPy is lacking the needed functionality.

	Parameters

	
	default_timeout – The default timeout in seconds.

	cache – The name of the caching instance to connect to, for
example: mycache@localhost:3031, defaults to an empty string, which
means uWSGI will cache in the local instance. If the cache is in the
same instance as the werkzeug app, you only have to provide the name of
the cache.

	
add(key, value, timeout=None)

	Works like set() but does not overwrite the values of already
existing keys.

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Same as set(), but also False for already
existing keys.

	Return type

	boolean

	
clear()

	Clears the cache. Keep in mind that not all caches support
completely clearing the cache.

	Returns

	Whether the cache has been cleared.

	Return type

	boolean

	
delete(key)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
get(key)

	Look up key in the cache and return the value for it.

	Parameters

	key – the key to be looked up.

	Returns

	The value if it exists and is readable, else None.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
set(key, value, timeout=None)

	Add a new key/value to the cache (overwrites value, if key already
exists in the cache).

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 indicates that the cache never expires.

	Returns

	True if key has been updated, False for backend
errors. Pickling errors, however, will raise a subclass of
pickle.PickleError.

	Return type

	boolean

MemcachedCache

	
class falcon_caching.backends.MemcachedCache(servers=None, default_timeout=300, key_prefix=None)

	A cache that uses memcached as backend.

The first argument can either be an object that resembles the API of a
memcache.Client or a tuple/list of server addresses. In the
event that a tuple/list is passed, Werkzeug tries to import the best
available memcache library.

This cache looks into the following packages/modules to find bindings for
memcached:

	pylibmc

	google.appengine.api.memcached

	memcached

	libmc

Implementation notes: This cache backend works around some limitations in
memcached to simplify the interface. For example unicode keys are encoded
to utf-8 on the fly. Methods such as get_dict() return
the keys in the same format as passed. Furthermore all get methods
silently ignore key errors to not cause problems when untrusted user data
is passed to the get methods which is often the case in web applications.

	Parameters

	
	servers – a list or tuple of server addresses or alternatively
a memcache.Client or a compatible client.

	default_timeout – the default timeout that is used if no timeout is
specified on set(). A timeout of
0 indicates that the cache never expires.

	key_prefix – a prefix that is added before all keys. This makes it
possible to use the same memcached server for different
applications. Keep in mind that
clear() will also clear keys with a
different prefix.

	
add(key, value, timeout=None)

	Works like set() but does not overwrite the values of already
existing keys.

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Same as set(), but also False for already
existing keys.

	Return type

	boolean

	
clear()

	Clears the cache. Keep in mind that not all caches support
completely clearing the cache.

	Returns

	Whether the cache has been cleared.

	Return type

	boolean

	
dec(key, delta=1)

	Decrements the value of a key by delta. If the key does
not yet exist it is initialized with -delta.

For supporting caches this is an atomic operation.

	Parameters

	
	key – the key to increment.

	delta – the delta to subtract.

	Returns

	The new value or None for backend errors.

	
delete(key)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
delete_many(*keys)

	Deletes multiple keys at once.

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	Returns

	Whether all given keys have been deleted.

	Return type

	boolean

	
get(key)

	Look up key in the cache and return the value for it.

	Parameters

	key – the key to be looked up.

	Returns

	The value if it exists and is readable, else None.

	
get_dict(*keys)

	Like get_many() but return a dict:

d = cache.get_dict("foo", "bar")
foo = d["foo"]
bar = d["bar"]

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	
get_many(*keys)

	Returns a list of values for the given keys.
For each key an item in the list is created:

foo, bar = cache.get_many("foo", "bar")

Has the same error handling as get().

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
import_preferred_memcache_lib(servers)

	Returns an initialized memcache client. Used by the constructor.

	
inc(key, delta=1)

	Increments the value of a key by delta. If the key does
not yet exist it is initialized with delta.

For supporting caches this is an atomic operation.

	Parameters

	
	key – the key to increment.

	delta – the delta to add.

	Returns

	The new value or None for backend errors.

	
set(key, value, timeout=None)

	Add a new key/value to the cache (overwrites value, if key already
exists in the cache).

	Parameters

	
	key – the key to set

	value – the value for the key

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 indicates that the cache never expires.

	Returns

	True if key has been updated, False for backend
errors. Pickling errors, however, will raise a subclass of
pickle.PickleError.

	Return type

	boolean

	
set_many(mapping, timeout=None)

	Sets multiple keys and values from a mapping.

	Parameters

	
	mapping – a mapping with the keys/values to set.

	timeout – the cache timeout for the key in seconds (if not
specified, it uses the default timeout). A timeout of
0 idicates that the cache never expires.

	Returns

	Whether all given keys have been set.

	Return type

	boolean

SASLMemcachedCache

	
class falcon_caching.backends.SASLMemcachedCache(servers=None, default_timeout=300, key_prefix=None, username=None, password=None, **kwargs)

	

SpreadSASLMemcachedCache

	
class falcon_caching.backends.SpreadSASLMemcachedCache(*args, **kwargs)

	Simple Subclass of SASLMemcached client that will spread the value
across multiple keys if they are bigger than a given treshold.

Spreading requires using pickle to store the value, which can significantly
impact the performance.

	
delete(key)

	Delete key from the cache.

	Parameters

	key – the key to delete.

	Returns

	Whether the key existed and has been deleted.

	Return type

	boolean

	
delete_many(*keys)

	Deletes multiple keys at once.

	Parameters

	keys – The function accepts multiple keys as positional
arguments.

	Returns

	Whether all given keys have been deleted.

	Return type

	boolean

	
get(key, chunk=True)

	Get a cached value.

	Parameters

	chunk – If set to False, it will return a cached value
that is spread across multiple keys.

	
has(key)

	Checks if a key exists in the cache without returning it. This is a
cheap operation that bypasses loading the actual data on the backend.

This method is optional and may not be implemented on all caches.

	Parameters

	key – the key to check

	
set(key, value, timeout=None, chunk=True)

	Set a value in cache, potentially spreading it across multiple key.

	Parameters

	
	key – The cache key.

	value – The value to cache.

	timeout – The timeout after which the cache will be invalidated.

	chunk – If set to False, then spreading across multiple keys
is disabled. This can be faster, but it will fail if
the value is bigger than the chunks. It requires you
to get back the object by specifying that it is not
spread.

AsyncBackends

BaseCache

NullCache

SimpleCache

FileSystemCache

RedisCache

RedisSentinelCache

MemcachedCache

Changelog

Version 1.1.0

	coredis Python dependency (used in async) upgrade to version 3.0+ - Thanks @alisaifee!

	Dropping support for Python 3.6

Version 1.0.1

	Documentation fix - AsyncBackend API reference was missing

Version 1.0.0

	Async support has been added

	Switching CI from Travis to GitHub Actions

Version 0.3.4

	Falcon 3.0.0 has renamed the Response.body to Response.text

Version 0.3.3

	Fixing the issue with multiple decorators when @cache.cached() is not the topmost one

	Fixing document readability issues in Sphinx

Version 0.3.1

	Added a new memoize() method to cache arbitrary methods with their arguments

Version 0.3.0

	Cache.memoize() and Cache.delete_memoized() methods were added to allow you to cache the result of other non-resource related functions with their argurments.

Version 0.2.0

	The Content-Type header is cached now, except when this is turned off by the CACHE_CONTENT_TYPE_JSON_ONLY setting, see [https://github.com/zoltan-fedor/falcon-caching/issues/2] and in the docs [https://falcon-caching.readthedocs.io/en/latest/index.html#what-gets-cached]

	Added a safer method to identify the on_ methods to decorate, see [https://github.com/zoltan-fedor/falcon-caching/issues/4]

	The request_body is no longer included in the cache key, see [https://github.com/zoltan-fedor/falcon-caching/issues/3]

Version 0.1.0

	Initial public release

License

MIT License

Copyright (c) 2019 Zoltan Fedor

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 falcon_caching	

 	
 	
 falcon_caching.async_backends	

 	
 	
 falcon_caching.backends	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | R
 | S
 | U

A

 	
 	add() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.FileSystemCache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.SimpleCache method)

 	(falcon_caching.backends.UWSGICache method)

 	(falcon_caching.backends.base.BaseCache method)

 	
 	AsyncCache (class in falcon_caching)

B

 	
 	BaseCache (class in falcon_caching.backends.base)

C

 	
 	Cache (class in falcon_caching)

 	cache (falcon_caching.AsyncCache attribute)

 	(falcon_caching.Cache attribute)

 	cache_args (falcon_caching.AsyncCache attribute)

 	(falcon_caching.Cache attribute)

 	cached() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache static method)

 	
 	clear() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.FileSystemCache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.UWSGICache method)

 	(falcon_caching.backends.base.BaseCache method)

D

 	
 	dec() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.base.BaseCache method)

 	delete() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.FileSystemCache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.SimpleCache method)

 	(falcon_caching.backends.SpreadSASLMemcachedCache method)

 	(falcon_caching.backends.UWSGICache method)

 	(falcon_caching.backends.base.BaseCache method)

 	
 	delete_many() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.SpreadSASLMemcachedCache method)

 	(falcon_caching.backends.base.BaseCache method)

 	delete_memoized() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	delete_memoized_verhash() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	dump_object() (falcon_caching.backends.Redis method)

F

 	
 	falcon_caching (module)

 	falcon_caching.async_backends (module)

 	
 	falcon_caching.backends (module)

 	FileSystemCache (class in falcon_caching.backends)

G

 	
 	get() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.FileSystemCache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.SimpleCache method)

 	(falcon_caching.backends.SpreadSASLMemcachedCache method)

 	(falcon_caching.backends.UWSGICache method)

 	(falcon_caching.backends.base.BaseCache method)

 	
 	get_dict() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.base.BaseCache method)

 	get_many() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.base.BaseCache method)

H

 	
 	has() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.FileSystemCache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.NullCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.SimpleCache method)

 	(falcon_caching.backends.SpreadSASLMemcachedCache method)

 	(falcon_caching.backends.UWSGICache method)

 	(falcon_caching.backends.base.BaseCache method)

I

 	
 	import_preferred_memcache_lib() (falcon_caching.backends.MemcachedCache method)

 	inc() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.base.BaseCache method)

L

 	
 	load_object() (falcon_caching.backends.Redis method)

M

 	
 	MemcachedCache (class in falcon_caching.backends)

 	memoize() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	
 	middleware (falcon_caching.AsyncCache attribute)

 	(falcon_caching.Cache attribute)

N

 	
 	NullCache (class in falcon_caching.backends)

R

 	
 	Redis (class in falcon_caching.backends)

 	
 	RedisSentinel (class in falcon_caching.backends)

S

 	
 	SASLMemcachedCache (class in falcon_caching.backends)

 	set() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.FileSystemCache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.SimpleCache method)

 	(falcon_caching.backends.SpreadSASLMemcachedCache method)

 	(falcon_caching.backends.UWSGICache method)

 	(falcon_caching.backends.base.BaseCache method)

 	
 	set_many() (falcon_caching.AsyncCache method)

 	(falcon_caching.Cache method)

 	(falcon_caching.backends.MemcachedCache method)

 	(falcon_caching.backends.Redis method)

 	(falcon_caching.backends.base.BaseCache method)

 	SimpleCache (class in falcon_caching.backends)

 	SpreadSASLMemcachedCache (class in falcon_caching.backends)

U

 	
 	unlink() (falcon_caching.backends.Redis method)

 	
 	UWSGICache (class in falcon_caching.backends)

Backends (alias ‘CACHE_TYPE’)

When you are caching you have the choice of what kind of backend to
cache to, be that a Redis database, Memcached, the local process’ memory
or just files on the local filesystem.

The Falcon-Caching library offers you different backend options and made to
be extendable, so additional backend options can be added.

The type of backend used is determined by the CACHE_TYPE attribute -
see `Configuring Falcon-Caching`_.

Below is an example of using CACHE_TYPE with value ‘simple’ - which makes
the cached records stored in the local process’ memory (not 100% thread safe!):

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple', # backend 'simple' will be used
 'CACHE_EVICTION_STRATEGY': 'time-based'
 })

Note

Credits must be given to the authors and maintainers of the
Flask-Caching [https://github.com/sh4nks/flask-caching] library,
as the structure and much of the code of our backends was ported from
their popular library.

Below is a list of available backends, alias the available CACHE_TYPE options:

‘simple’ (the default)

A simple memory cache for single process environments. This option exists
mainly for the development server and is not 100% thread safe. It tries
to use as many atomic operations as possible and no locks for simplicity,
but it could happen under heavy load that keys are added multiple times.
Do not use in production!

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple', # backend 'simple' will be used
 'CACHE_EVICTION_STRATEGY': 'time-based'
 })

‘null’

A cache that doesn’t cache. This can be useful for unit testing.

‘filesystem’

A cache that stores the items on the file system. This cache depends
on being the only user of the ‘cache_dir’. Make absolutely sure that
nobody but this cache stores files there or otherwise the cache will
randomly delete files therein.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'filesystem',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_DIR': '/tmp/falcon-cache-dedicated/',
 'CACHE_THRESHOLD': 500 # the maximum number of items the
 # cache stores before it starts
 # deleting some. A threshold value
 # of 0 indicates no threshold.
 # default: 500
 })

‘redis’

A cache that stores the items in the Redis key-value store or an
object which is API compatible with the official Python Redis
client (redis-py).

If you want to use an object which is API compatible with the official
Python Redis client (redis-py), then just supply that as an initialized object
to the CACHE_REDIS_HOST parameter.

If you use the same Redis database for other purposes too, then you are strongly
advised to specify the CACHE_KEY_PREFIX, so keys would not accidentally collide
and cache.clean() calls would only remove keys from the cache and not other records.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'redis',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_REDIS_HOST': 'localhost', # Redis host/client object
 # default: 'localhost'
 'CACHE_REDIS_PORT': 6379, # default: 6379
 'CACHE_REDIS_PASSWORD': 'MyRedisPassword', # default: None
 'CACHE_REDIS_DB': 0, # default: 0
 'CACHE_KEY_PREFIX': 'mycache' # default: None
 })

Alternatively you could also supply a Redis URL via the CACHE_REDIS_URL argument,
like redis://user:password@localhost:6379/2.

‘redis-sentinel’

A cache that stores the items in a Redis Sentinel [https://redis.io/topics/sentinel],
which is a high availability ‘load-balancer’ for a Redis cluster.

Just like for ‘redis’, if you use the same Redis database for other purposes too,
then you are strongly
advised to specify the CACHE_KEY_PREFIX, so keys would not accidentally collide
and cache.clean() calls would only remove keys from the cache and not other records.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'redissentinel'
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_REDIS_SENTINELS': [("127.0.0.1", 26379),
 ("10.0.0.1", 26379)],
 'CACHE_REDIS_SENTINEL_MASTER': 'mymaster', # default: None
 'CACHE_REDIS_PASSWORD': 'MyRedisPassword', # default: None
 'CACHE_REDIS_SENTINEL_PASSWORD': 'MyPsw', # default: None
 'CACHE_REDIS_DB': 0, # default: 0
 'CACHE_KEY_PREFIX': 'mycache' # default: None
 })

‘memcached’

A cache that stores the items in a Memcached instance or cluster.
It supports the pylibmc, memcache and the google app engine memcache libraries.

You can supply one or more server addresses via CACHE_MEMCACHED_SERVERS or
you can supply an already initialized client, an object that resembles
the API of a memcache.Client. If you have supplied a server(s) address, then
the library will pick the best memcached client library available to use.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'memcached',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",
 "127.0.0.1:11212"]
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

Note

Flask-Caching does not pass additional configuration options
to memcached backends. To add additional configuration to these caches,
directly set the configuration options on the object after instantiation:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'memcached',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",
 "127.0.0.1:11212"]
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

Break convention and set options on the _client object
directly. For pylibmc behaviors:
cache.cache._client.behaviors["tcp_nodelay"] = True

‘saslmemcached’

A cache that stores the items in an SASL-authentication protected Memcached
instance or cluster.

Just like for memcached - you can supply one or more server addresses
via CACHE_MEMCACHED_SERVERS or
you can supply an already initialized client, an object that resembles
the API of a memcache.Client.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'saslmemcached',
 'CACHE_EVICTION_STRATEGY': 'time-based',
 'CACHE_MEMCACHED_SERVERS': ["127.0.0.1:11211",
 "127.0.0.1:11212"]
 'CACHE_MEMCACHED_USERNAME': 'myuser', # default: None
 'CACHE_MEMCACHED_PASSWORD': 'MyPassword', # default: None
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

‘spreadsaslmemcached’

A subclass of the saslmemcached backend that will spread the cached values
across multiple records if they are bigger than the memcached treshold which
by default is 1M.

Spreading requires using pickle to store the value, which can significantly
impact the performance.

‘uwsgi’

Implements the cache using uWSGI’s caching framework.

To set the uwsgi caching instance to connect to, for example: mycache@localhost:3031,
use the CACHE_UWSGI_NAME argument, which defaults to an empty string, in which case
uWSGI will cache in the local instance.

This backend cannot be used when running under PyPy, because the uWSGI
API implementation for PyPy is lacking the required functionality.

Example:

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'uwsgi',
 'CACHE_UWSGI_NAME': 'mycache@localhost:3031', # default: ''
 'CACHE_KEY_PREFIX': 'cache' # default: None
 })

Configuring Falcon-Caching

The following configuration values exist for Falcon-Caching:

	CACHE_EVICTION_STRATEGY

	The eviction strategy determines when a cached
resource is removed from cache.

Available eviction strategies:

	time-based: records are removed once time expires (default)

	rest-based: records are removed once a PUT/POST/PATCH/DELETE call is made against the resource

	rest-and-time-based: records are removed either by time or request method (whichever happens first)

See more at `Eviction strategies`_

	CACHE_TYPE

	Specifies which type of caching object to
use. This is an import string that will
be imported and instantiated. It is
assumed that the import object is a
function that will return a cache
object that adheres to the cache API.

For falcon_caching.backends objects, you
do not need to specify the entire
import string, just one of the following
names.

Built-in cache types:

	null: NullCache (default)

	simple: SimpleCache

	filesystem: FileSystemCache

	redis: RedisCache (redis required)

	redissentinel: RedisSentinelCache (redis required)

	uwsgi: UWSGICache (uwsgi required)

	memcached: MemcachedCache (pylibmc or memcache required)

	gaememcached: same as memcached (for backwards compatibility)

	saslmemcached: SASLMemcachedCache (pylibmc required)

	spreadsaslmemcached: SpreadSASLMemcachedCache (pylibmc required)

	CACHE_CONTENT_TYPE_JSON_ONLY

	Set to True if all your cached responders
use the application/json Content-Type,
which will turn off serialization and
provide a performance boost. Defaults to
False.

	CACHE_NO_NULL_WARNING

	Silence the warning message when using
cache type of ‘null’.

	CACHE_ARGS

	Optional list to unpack and pass during
the cache class instantiation.

	CACHE_OPTIONS

	Optional dictionary to pass during the
cache class instantiation.

	CACHE_DEFAULT_TIMEOUT

	The default timeout that is used if no
timeout is specified. Unit of time is
seconds.

	CACHE_IGNORE_ERRORS

	If set to any errors that occurred during the
deletion process will be ignored. However, if
it is set to False it will stop on the
first error. This option is only relevant for
the backends filesystem and simple.
Defaults to False.

	CACHE_THRESHOLD

	The maximum number of items the cache
will store before it starts deleting
some. Used only for SimpleCache and
FileSystemCache

	CACHE_KEY_PREFIX

	A prefix that is added before all keys.
This makes it possible to use the same
memcached server for different apps.
Used only for RedisCache and MemcachedCache

	CACHE_UWSGI_NAME

	The name of the uwsgi caching instance to
connect to, for example: mycache@localhost:3031,
defaults to an empty string, which means uWSGI
will cache in the local instance.

	CACHE_MEMCACHED_SERVERS

	A list or a tuple of server addresses.
Used only for MemcachedCache

	CACHE_MEMCACHED_USERNAME

	Username for SASL authentication with memcached.
Used only for SASLMemcachedCache

	CACHE_MEMCACHED_PASSWORD

	Password for SASL authentication with memcached.
Used only for SASLMemcachedCache

	CACHE_REDIS_HOST

	A Redis server host. Used only for RedisCache.

	CACHE_REDIS_PORT

	A Redis server port. Default is 6379.
Used only for RedisCache.

	CACHE_REDIS_PASSWORD

	A Redis password for server. Used only for RedisCache and
RedisSentinelCache.

	CACHE_REDIS_DB

	A Redis db (zero-based number index). Default is 0.
Used only for RedisCache and RedisSentinelCache.

	CACHE_REDIS_SENTINELS

	A list or a tuple of Redis sentinel addresses. Used only for
RedisSentinelCache.

	CACHE_REDIS_SENTINEL_MASTER

	The name of the master server in a sentinel configuration. Used
only for RedisSentinelCache.

	CACHE_DIR

	Directory to store cache. Used only for
FileSystemCache.

	CACHE_REDIS_URL

	URL to connect to Redis server.
Example redis://user:password@localhost:6379/2. Supports
protocols redis://, rediss:// (redis over TLS) and
unix://. See more info about URL support at http://redis-py.readthedocs.io/en/latest/index.html#redis.ConnectionPool.from_url.
Used only for RedisCache.

Eviction strategies

Once a resource is cached, there is the question of how that cached record will be evicted
from the cache - alias what ‘eviction strategy’ is followed.

Below is the list of supported strategies:

‘time-based’

The most well known eviction strategy is simply time-based, meaning that the cached record
gets evicted based on a timeout (also called TTL, time-to-live) being reached. In this case
the cached data is invalidated x seconds after it was generated.
In our library this is called ‘time-based’ eviction and it is the default eviction
strategy.

‘rest-based’

For REST APIs - which implement the
RESTful methods [https://en.wikipedia.org/wiki/Representational_state_transfer#Relationship_between_URI_and_HTTP_methods]
closely - there is another possible option, to evict records based on the definition of the
RESTful methods.

In this case GET requests are the only ones cached, but those are cached indefinitely.
They only get removed from the cache when another request
of the same resource of type PUT / PATCH / POST or DELETE arrives. This will
invalidate/evict the cached record and force the next GET request to re-cache it.
We call this ‘rest-based’ eviction strategy.

‘rest-and-time-based’

The third option is a combination of these two, where the eviction happens based on
whichever of these two events occurs first - the time expires or a PUT/PATCH/POST/DELETE
request arrives.
We call this ‘rest-and-time-based’ eviction strategy.

These eviction strategies can be set with the CACHE_EVICTION_STRATEGY config attribute -
see `Configuring Falcon-Caching`_.

from falcon_caching import Cache

cache = Cache(
 config={
 'CACHE_TYPE': 'simple',
 'CACHE_EVICTION_STRATEGY': 'rest-based'
 })

If no CACHE_EVICTION_STRATEGY is provided then the ‘time-based’ strategy is used by default.

Memoization

New in version 0.3.

See Cache.memoize()

Using the @memoize decorator you are able to cache the result of other non-view related functions.
In memoization, the functions arguments are also included into the cache_key.

Note

Credits must be given to the authors and maintainers of the
Flask-Caching [https://github.com/sh4nks/flask-caching] library,
as much of the code of our memoize method was ported from
their popular library.

Outside just simple function, memoize is also designed for methods, since it will take into account
the identity [http://docs.python.org/library/functions.html#id]. of the
‘self’ or ‘cls’ argument as part of the cache key.

The theory behind memoization is that if you have a function you need
to call several times in one request, it would only be calculated the first
time that function is called with those arguments. For example, an sqlalchemy
object that determines if a user has a role. You might need to call this
function many times during a single request. To keep from hitting the database
every time this information is needed you might do something like the following:

class Person(db.Model):
 @cache.memoize(50)
 def has_membership(self, role_id):
 return Group.query.filter_by(user=self, role_id=role_id).count() >= 1

Warning

Using mutable objects (classes, etc) as part of the cache key can become
tricky. It is suggested to not pass in an object instance into a memoized
function. However, the memoize does perform a repr() on the passed in arguments
so that if the object has a __repr__ function that returns a uniquely
identifying string for that object, that will be used as part of the
cache key.

For example, an sqlalchemy person object that returns the database id as
part of the unique identifier:

class Person(db.Model):
 def __repr__(self):
 return "%s(%s)" % (self.__class__.__name__, self.id)

Deleting memoize cache

See Cache.delete_memoized()

New in version 0.3.

You might need to delete the cache on a per-function bases. Using the above
example, lets say you change the users permissions and assign them to a role,
but now you need to re-calculate if they have certain memberships or not.
You can do this with the delete_memoized() function:

cache.delete_memoized(user_has_membership)

Note

If only the function name is given as parameter, all the memoized versions
of it will be invalidated. However, you can delete specific cache by
providing the same parameter values as when caching. In following
example only the user-role cache is deleted:

user_has_membership('demo', 'admin')
user_has_membership('demo', 'user')

cache.delete_memoized(user_has_membership, 'demo', 'user')

Quickstart

WSGI (alias sync) example:

import falcon
from falcon_caching import Cache

setup the cache instance
cache = Cache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:

 # mark the method as cached
 @cache.cached(timeout=600)
 def on_get(self, req, resp):
 pass

create the app with the cache middleware
you can use falcon.API() instead of falcon.App() below Falcon 3.0.0
app = falcon.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

ASGI (alias async) example:

import falcon.asgi
from falcon_caching import AsyncCache

setup the cache instance
cache = AsyncCache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:

 # mark the method as cached
 @cache.cached(timeout=600)
 async def on_get(self, req, resp):
 pass

app = falcon.asgi.App(middleware=cache.middleware)

things = ThingsResource()

app.add_route('/things', things)

Alternatively you could cache the whole resource (watch out for
issues mentioned in Resource level caching):

mark the whole resource as cached
@cache.cached(timeout=600)
class ThingsResource:

 def on_get(self, req, resp):
 pass

 def on_post(self, req, resp):
 pass

Warning

Be careful with the order of middlewares. The cache.middleware will
short-circuit any further processing if a cached version of that resource is found.
It will skip any remaining process_request and process_resource methods,
as well as the responder method that the request would have been routed to.
However, any process_response middleware methods will still be called.

This is why it is suggested that you add the cache.middleware following any
authentication / authorization middlewares to avoid unauthorized access of records
served directly from the cache.

Recipes

Multiple decorators

For scenarios where there is a need for multiple decorators and the @cache.cached() cannot be the
topmost one, we need to register the decorators a special way.

This scenario is complicated because our @cache.cached() just marks the fact that the given
method is decorated with a cache, which later gets picked up by the middleware and triggers caching. If the
@cache.cached() is the topmost
decorator then it is easy to pick that up, but if there are other decorators ‘ahead’ it, then those
will ‘hide’ the @cache.cached(). This is because decorators in Python are just syntactic sugar
for nested function calls.

To be able to tell if the given endpoint was decorated by the @cache.cached() decorator when that is NOT
the topmost decorator, you need to decorate your method by registering your decorators using the
@register() helper decorator.

See more about this issue at
https://stackoverflow.com/questions/3232024/introspection-to-get-decorator-names-on-a-method

import falcon
from falcon_caching import Cache
from falcon_caching.utils import register

limiter = Limiter(
 key_func=get_remote_addr,
 default_limits=["10 per hour", "2 per minute"]
)

cache = Cache(config={'CACHE_TYPE': 'simple'})

class ThingsResource:
 # this is fine, as the @cache.cached() is the topmost (eg the first) decorator:
 @cache.cached(timeout=600)
 @another_decorator
 def on_get(self, req, resp):
 pass

class ThingsResource2:
 # the @cache.cached() is NOT the topmost decorator, so
 # this would NOT work - the cache decorator would be ignored!!!!
 # DO NOT DO THIS:
 @another_decorator
 @cache.cached(timeout=600)
 def on_get(self, req, resp):
 pass

class ThingsResource3:
 # use your decorators this way:
 @register(another_decorator, cache.cached(timeout=600))
 def on_get(self, req, resp):
 pass

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Falcon-Caching’s documentation!

 		
 API Reference Guide

 		
 Cache API

 		
 Backends

 		
 BaseCache

 		
 NullCache

 		
 SimpleCache

 		
 FileSystemCache

 		
 RedisCache

 		
 RedisSentinelCache

 		
 UWSGICache

 		
 MemcachedCache

 		
 SASLMemcachedCache

 		
 SpreadSASLMemcachedCache

 		
 AsyncBackends

 		
 BaseCache

 		
 NullCache

 		
 SimpleCache

 		
 FileSystemCache

 		
 RedisCache

 		
 RedisSentinelCache

 		
 MemcachedCache

 		
 Changelog

 		
 Version 1.1.0

 		
 Version 1.0.1

 		
 Version 1.0.0

 		
 Version 0.3.4

 		
 Version 0.3.3

 		
 Version 0.3.1

 		
 Version 0.3.0

 		
 Version 0.2.0

 		
 Version 0.1.0

 		
 License

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

